Nitrogen removal via nitrite from municipal landfill leachate.

J Environ Sci (China)

Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China.

Published: April 2010

AI Article Synopsis

Article Abstract

A system consisting of a two-stage up-flow anaerobic sludge blanket (UASB), an anoxic/aerobic (A/O) reactor and a sequencing batch reactor (SBR), was used to treat landfill leachate. During operation, denitrification and methanogenesis took place simultaneously in the first stage UASB, and the effluent chemical oxygen demand (COD) was further removed in the second stage UASB. Then the denitrification of nitrite and nitrate in the returned sludge by using the residual COD was accomplished in the A/O reactor, and ammonia was removed via nitrite in it. Last but not least, the residual ammonia was removed in SBR as well as nitrite and nitrate which were produced by nitrification. The results over 120 d (60 d for phase I and 60 d for phase II) were as follows: when the total nitrogen (TN) concentration of influent leachate was about 2500 mg/L and the ammonia nitrogen concentration was about 2000 mg/L, the short-cut nitrification with 85%-90% nitrite accumulation was achieved stably in the A/O reactor. The TN and ammonia nitrogen removal efficiencies of the system were 98% and 97%, respectively. The residual ammonia, nitrite and nitrate produced during nitrification in the A/O reactor could be washed out almost completely in SBR. The TN and ammonia nitrogen concentrations of final effluent were about 39 mg/L and 12 mg/L, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1001-0742(08)62443-2DOI Listing

Publication Analysis

Top Keywords

a/o reactor
16
nitrite nitrate
12
ammonia nitrogen
12
nitrogen removal
8
landfill leachate
8
stage uasb
8
reactor ammonia
8
ammonia removed
8
residual ammonia
8
nitrate produced
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!