Alloyed gold/silver nanoparticles with a core/shell structure are produced from preformed gold and silver nanoparticles during ultrasonic treatment at different intensities in water and in the presence of surface-active species. Preformed gold nanoparticles with an average diameter of 15 + or - 5 nm are prepared by the citrate reduction of chloroauric acid in water, and silver nanoparticles (38 + or - 7 nm) are formed after reduction of silver nitrate by sodium borohydride. Bare binary gold/silver nanoparticles with a core/shell structure are formed in aqueous solution after 1 h of sonication at high ultrasonic intensity. Cationic-surfactant-coated preformed gold and silver nanoparticles become gold/silver-alloy nanoparticles after 3 h of sonication in water at 55 W cm(-2), whereas only fusion of isolated gold and silver nanoparticles is observed after ultrasonic treatment in the presence of an anionic surfactant. As the X-ray diffraction profile of alloyed gold/silver nanoparticles reveals split, shifted, and disappeared peaks, the face-centered-cubic crystalline structure of the binary nanoparticles is defect-enriched by temperatures that can be as high as several thousand Kelvin inside the cavitation bubbles during ultrasonic treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.200901623 | DOI Listing |
J Indian Soc Pedod Prev Dent
October 2024
Department of Pediatric and Preventive Dentistry, Santosh Deemed to be University, Santosh Dental College and Hospital, Ghaziabad, Uttar Pradesh, India.
Chem Asian J
January 2025
Universidad Austral de Chile, Instituto de Ciencias Químicas, CHILE.
Plasmonic materials can be utilized as effective platforms to enhance luminescent signals of luminescent metal nanoclusters (LMNCs). Both surface enhanced fluorescence (SEF) and shell-isolated nanoparticle-enhanced fluorescence (SHINEF) strategies take advantage of the localized and increased external electric field created around the plasmonic metal surface when excited at or near their characteristic plasmonic resonance. In this context, we present an experimental and computational study of different plasmonic composites, (Ag) Ag@SiO2 and (Au) Au@SiO2 nanoparticles, which were used to enhance the luminescent signal of Au nanoclusters coated with glutathione (GSH) molecule (Au25GSH NCs).
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Centro de Investigación y Desarrollo de Nanomedicinas (CIDeN), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876 Bernal, Argentina.
The properties of two hybrid nanoarchaeosomes (hybrid nanoARCs) made of archaeolipids extracted from the halophilic archaea and combining the properties of archaeolipid bilayers with metallic nanoparticles are explored here. BS-nanoARC, consisting of a nanoARC loaded with yerba mate ( extract (YME)-biogenic silver nanoparticles (BSs), and [BS + BS-nanoARC], consistent of a BS-nanoARC core covered by an outer shell of BSs, were structurally characterized and their therapeutic activities screened. By employing 109 ± 5 µg gallic acid equivalents (GAEs) and 73.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Chongqing Academy of Metrology and Quality Inspection, Chongqing 401120, China.
Dynamic hydrogels have attracted considerable attention in the application of flexible electronics, as they possess injectable and self-healing abilities. However, it is still a challenge to combine high conductivity and antibacterial properties into dynamic hydrogels. In this work, we fabricated a type of dynamic hydrogel based on acylhydrazone bonds between thermo-responsive copolymer and silver nanoparticles (AgNPs) functionalized with hydrazide groups.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Botany and Microbiology Department, Faculty of Science, Damanhour University, Damanhour 22511, Egypt.
Biosorbents have demonstrated considerable potential for the remediation of metals in aqueous environments. An aqueous extract of L. (EiE) and its extract-coated silver nanoparticles have been prepared and employed for the removal of iron.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!