To elucidate compositional changes of the limbic system with aging, the authors investigated age-related changes of elements in the hippocampus, dentate gyrus, and fornix and the relationships among elements by direct chemical analysis. After ordinary dissections at Nara Medical University were finished, the hippocampi, dentate gyri, and fornices were resected from identical cerebra of the subjects which consisted of 23 men and 23 women, ranging in age from 70 to 101 years. After ashing with nitric acid and perchloric acid, element contents were determined by inductively coupled plasma-atomic emission spectrometry. The average contents of P, Zn, and Na were significantly less in both the hippocampi and dentate gyri compared with the fornices. It was found that the Ca and Mg contents increased significantly in the hippocampus with aging; the P content increased significantly in the dentate gyrus with aging, whereas the Na content decreased in the dentate gyrus with aging; and the Mg content increased significantly in the fornix with aging. Regarding the relationships among elements, a significant direct correlation between Ca and Fe contents and an extremely significant inverse correlation between P and Zn contents were found in both the hippocampi and dentate gyri. In addition, a significant direct correlation between P and Mg contents was found in both the hippocampi and fornices. Pearson's correlation was used to examine whether there were elements with significant correlation among the hippocampus, dentate gyrus, fornix, and mammillary body. Significant correlations were found in five elements of Ca, P, Mg, Zn, and Fe except for S and Na among the hippocampus, dentate gyrus, and mammillary body with one exception. Regarding the fornix, significant correlations were found in two elements of P and Fe between the fornix and hippocampus, dentate gyrus, or mammillary body.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12011-009-8605-5 | DOI Listing |
Sci Rep
December 2024
Department of Biology, University of South Dakota, 414 East Clark Street, Vermillion, SD, 57069-2390, USA.
Psychological distress, including anxiety or mood disorders, emanates from the onset of chronic/unpredictable stressful events. Symptoms in the form of maladaptive behaviors are learned and difficult to treat. While the origin of stress-induced disorders seems to be where learning and stress intersect, this relationship and molecular pathways involved remain largely unresolved.
View Article and Find Full Text PDFNeurosci Lett
December 2024
School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA; Veterans Affairs Medical Center, Salem, VA, USA. Electronic address:
Regulation of glutamate through glutamate-glutamine cycling is critical for mediating nervous system plasticity. Blast-induced traumatic brain injury (bTBI) has been linked to glutamate-dependent excitotoxicity, which may be potentiating chronic disorders such as post-traumatic epilepsy. The purpose of this study was to measure changes in the expression of astrocytic and neuronal proteins responsible for glutamatergic regulation at 4-, 12-, and 24 h in the cortex and hippocampus following single blast exposure in a rat model for bTBI.
View Article and Find Full Text PDFJ Neurosci
December 2024
Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
Excitatory synapses and the actin-rich dendritic spines on which they reside are indispensable for information processing and storage in the brain. In the adult hippocampus, excitatory synapses must balance plasticity and stability to support learning and memory. However, the mechanisms governing this balance remain poorly understood.
View Article and Find Full Text PDFHippocampus
January 2025
Department of Child and Adolescent Psychology, Neuroscience & Physiology, and Psychiatry and the Neuroscience Institute, New York University Grossman School of Medicine, New York University Langone Health, New York, New York, USA.
For many years, the hilus of the dentate gyrus (DG) was a mystery because anatomical data suggested a bewildering array of cells without clear organization. Moreover, some of the anatomical information led to more questions than answers. For example, it had been identified that one of the major cell types in the hilus, the mossy cell, innervates granule cells (GCs).
View Article and Find Full Text PDFBiol Psychiatry Glob Open Sci
January 2025
Department of Psychiatry, New York University Grossman School of Medicine, New York, New York.
Background: An excess of exosomes, nanovesicles released from all cells and key regulators of brain plasticity, is an emerging therapeutic target for stress-related mental illnesses. The effects of chronic stress on exosome levels are unknown; even less is known about molecular drivers of exosome levels in the stress response.
Methods: We used our state-of-the-art protocol with 2 complementary strategies to isolate neuronal exosomes from plasma, ventral dentate gyrus, basolateral amygdala, and olfactory bulbs of male mice to determine the effects of chronic restraint stress (CRS) on exosome levels.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!