Protease-sensitive synthetic prions.

PLoS Pathog

Institute for Neurodegenerative Diseases, University of California, San Francisco, California, United States of America.

Published: January 2010

Prions arise when the cellular prion protein (PrP(C)) undergoes a self-propagating conformational change; the resulting infectious conformer is designated PrP(Sc). Frequently, PrP(Sc) is protease-resistant but protease-sensitive (s) prions have been isolated in humans and other animals. We report here that protease-sensitive, synthetic prions were generated in vitro during polymerization of recombinant (rec) PrP into amyloid fibers. In 22 independent experiments, recPrP amyloid preparations, but not recPrP monomers or oligomers, transmitted disease to transgenic mice (n = 164), denoted Tg9949 mice, that overexpress N-terminally truncated PrP. Tg9949 control mice (n = 174) did not spontaneously generate prions although they were prone to late-onset spontaneous neurological dysfunction. When synthetic prion isolates from infected Tg9949 mice were serially transmitted in the same line of mice, they exhibited sPrP(Sc) and caused neurodegeneration. Interestingly, these protease-sensitive prions did not shorten the life span of Tg9949 mice despite causing extensive neurodegeneration. We inoculated three synthetic prion isolates into Tg4053 mice that overexpress full-length PrP; Tg4053 mice are not prone to developing spontaneous neurological dysfunction. The synthetic prion isolates caused disease in 600-750 days in Tg4053 mice, which exhibited sPrP(Sc). These novel synthetic prions demonstrate that conformational changes in wild-type PrP can produce mouse prions composed exclusively of sPrP(Sc).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2809756PMC
http://dx.doi.org/10.1371/journal.ppat.1000736DOI Listing

Publication Analysis

Top Keywords

synthetic prions
12
tg9949 mice
12
synthetic prion
12
prion isolates
12
tg4053 mice
12
mice
9
protease-sensitive synthetic
8
prions
8
protease-sensitive prions
8
mice overexpress
8

Similar Publications

Background: Paper symptom diaries are a common tool for assessing motor fluctuations in Parkinson's disease (PD) patients, but there are concerns about inaccuracies in the assessment of motor fluctuation due to recall bias and poor compliance. We, therefore, developed an electronic diary with reminder and real-time recording functions.

Objectives And Methods: To evaluate the effectiveness of the electronic diary, we compared compliance and motor fluctuation assessment with a paper diary.

View Article and Find Full Text PDF

[PSI]-CIC: A Deep-Learning Pipeline for the Annotation of Sectored Saccharomyces cerevisiae Colonies.

Bull Math Biol

December 2024

Department of Applied Mathematics, University of California, Merced, 5200 N Lake Drive, Merced, CA, 95343, USA.

The prion phenotype in yeast manifests as a white, pink, or red color pigment. Experimental manipulations destabilize prion phenotypes, and allow colonies to exhibit (red) sectored phenotypes within otherwise completely white colonies. Further investigation of the size and frequency of sectors that emerge as a result of experimental manipulation is capable of providing critical information on mechanisms of prion curing, but we lack a way to reliably extract this information.

View Article and Find Full Text PDF
Article Synopsis
  • Mammalian prions are infectious proteins formed from misfolded variants of the normal prion protein (PrP), exhibiting different conformations that can self-propagate and cause various prion diseases.
  • Research demonstrates that fibrillar assemblies from recombinant PrP (rPrP) derived from various species (hamster, mouse, human, and bovine) show distinct pathogenic behaviors and strain properties when tested in transgenic mice.
  • The findings indicate that rPrP assemblies can be used to study the transmission of prions and their strain diversity, as they can mimic the adaptation processes of genuine prions despite lacking certain crucial amino acid regions for infectivity.
View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by amyloid plaques and cognitive decline, the latter of which is thought to be driven by soluble oligomeric amyloid-β (oAβ). The dysregulation of G protein-gated inwardly rectifying K (GIRK; also known as Kir3) channels has been implicated in rodent models of AD. Here, seeking mechanistic insights, we uncovered a sex-dependent facet of GIRK-dependent signaling in AD-related amyloid pathophysiology.

View Article and Find Full Text PDF

Single-domain antibodies and aptamers drive new opportunities for neurodegenerative disease research.

Front Immunol

September 2024

Minnesota Center for Prion Research and Outreach (MNPRO), University of Minnesota, St. Paul, MN, United States.

Neurodegenerative diseases (NDs) in mammals, such as Alzheimer's disease (AD), Parkinson's disease (PD), and transmissible spongiform encephalopathies (TSEs), are characterized by the accumulation of misfolded proteins in the central nervous system (CNS). Despite the presence of these pathogenic proteins, the immune response in affected individuals remains notably muted. Traditional immunological strategies, particularly those reliant on monoclonal antibodies (mAbs), face challenges related to tissue penetration, blood-brain barrier (BBB) crossing, and maintaining protein stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!