Antimicrobial resistance is depleting the pharmacopeia of agents clinically useful against Gram-negative bacilli. As the number of active agents diminishes, accurate susceptibility testing becomes critical. We studied the susceptibilities of 107 isolates of the Acinetobacter baumannii-calcoaceticus complex to amikacin, gentamicin, and tobramycin using disk diffusion, Etest, as well as the Phoenix, Vitek 2, and MicroScan automated systems, and compared the results to those obtained by broth microdilution. Genes encoding aminoglycoside-modifying enzymes (AMEs) were detected by multiplex PCR, and clonal relationships were determined by pulsed-field gel electrophoresis. Tobramycin was the most active aminoglycoside (27.1% of isolates were susceptible). Disk diffusion and Etest tended to be more accurate than the Vitek 2, Phoenix, and MicroScan automated systems; but errors were noted with all methods. The Vitek 2 instrument incorrectly reported that more than one-third of the isolates were susceptible to amikacin (a very major error). Isolates were polyclonal, with 26 distinct strains, and carried multiple AME genes unrelated to the strain type. The presence of the ant(2")-Ia gene was statistically associated with resistance to each aminoglycoside. The AME genotype accounted for the resistance profile observed in a minority of isolates, suggesting the involvement of multiple resistance mechanisms. Hospital pharmacy records indicated the preferential use of amikacin over other aminoglycosides in the burn intensive care unit, where aminoglycoside resistance is prevalent. The resistance in that unit did not correlate with a predominant strain, AME genotype, or total annual aminoglycoside consumption. Susceptibility to tobramycin increased, even though susceptible isolates carried AME genotypes predicting the inactivation of tobramycin. Determination of the relative contribution of multiple concurrent resistance mechanisms may improve our understanding of aminoglycoside resistance in the Acinetobacter baumannii-calcoaceticus complex.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2849581PMC
http://dx.doi.org/10.1128/JCM.02006-09DOI Listing

Publication Analysis

Top Keywords

aminoglycoside resistance
12
acinetobacter baumannii-calcoaceticus
12
baumannii-calcoaceticus complex
12
susceptibility testing
8
resistance
8
disk diffusion
8
diffusion etest
8
microscan automated
8
automated systems
8
isolates susceptible
8

Similar Publications

Co-existence of two bla and bla on distinct plasmids in a carbapenem-resistant Klebsiella pneumoniae from a tertiary hospital, Tanzania.

J Glob Antimicrob Resist

January 2025

Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania; Department of Clinical Science, University of Bergen, Bergen, Norway. Electronic address:

Purpose: To understand the mechanisms of carbapenem-resistant Klebsiella pneumoniae (CRKP) from Tanzania and characterize the genomes carrying the carbapenemase genes.

Methods: Clinical CRKP isolates were selected from ongoing antimicrobial-resistant surveillance at Muhimbili National Hospital, Dar es Salaam, Tanzania. Whole-genome sequencing was performed utilizing Illumina and Nanopore platforms.

View Article and Find Full Text PDF

Fortimicins (FTMs) are fortamine-containing aminoglycoside antibiotics (AGAs) produced by M. olivasterospora DSM 43868 with excellent bactericidal activities against a wide range of Enterobacteriaceae and synergistic activity against multidrug-resistant (MDR) pathogens. Fortimicin-A (FTM-A), the most active member of FTMs, has the lowest susceptibility to inactivation by the aminoglycoside modifying enzymes (AMEs).

View Article and Find Full Text PDF

Introduction: Tackling the inertia of growing threat of antimicrobial resistance (AMR) requires changes in how antibiotics are prescribed and utilized. The monitoring of antimicrobial prescribing in hospitals is a critical component in optimizing antibiotic use. Point prevalence surveys (PPSs) enable the surveillance of antibiotic prescribing at the patient level in small hospitals that lack the resources to establish antimicrobial stewardship programs (ASP).

View Article and Find Full Text PDF

Progress in antileishmanial drugs: Mechanisms, challenges, and prospects.

PLoS Negl Trop Dis

January 2025

Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China.

Leishmaniasis, a neglected tropical disease caused by Leishmania parasites, continues to pose global health challenges. Current treatments face issues like resistance, safety, efficacy, and cost. This review covers the discovery, mechanisms of action, clinical applications, and limitations of key antileishmanial agents: pentavalent antimonials, amphotericin B, miltefosine, paromomycin, and pentamidine.

View Article and Find Full Text PDF

Metabolic mutations reduce antibiotic susceptibility of E. coli by pathway-specific bottlenecks.

Mol Syst Biol

January 2025

Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 24, 72076, Tübingen, Germany.

Metabolic variation across pathogenic bacterial strains can impact their susceptibility to antibiotics and promote the evolution of antimicrobial resistance (AMR). However, little is known about how metabolic mutations influence metabolism and which pathways contribute to antibiotic susceptibility. Here, we measured the antibiotic susceptibility of 15,120 Escherichia coli mutants, each with a single amino acid change in one of 346 essential proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!