A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In vitro and in vivo enhanced generation of human A9 dopamine neurons from neural stem cells by Bcl-XL. | LitMetric

In vitro and in vivo enhanced generation of human A9 dopamine neurons from neural stem cells by Bcl-XL.

J Biol Chem

Center of Molecular Biology Severo Ochoa (Consejo Superior de Investigaciones Científicas-UAM), Department of Molecular Biology, Autonomous University of Madrid, 28049 Madrid, Spain. Electronic address:

Published: March 2010

Human neural stem cells derived from the ventral mesencephalon (VM) are powerful research tools and candidates for cell therapies in Parkinson disease. Previous studies with VM dopaminergic neuron (DAn) precursors indicated poor growth potential and unstable phenotypical properties. Using the model cell line hVM1 (human ventral mesencephalic neural stem cell line 1; a new human fetal VM stem cell line), we have found that Bcl-X(L) enhances the generation of DAn from VM human neural stem cells. Mechanistically, Bcl-X(L) not only exerts the expected antiapoptotic effect but also induces proneural (NGN2 and NEUROD1) and dopamine-related transcription factors, resulting in a high yield of DAn with the correct phenotype of substantia nigra pars compacta (SNpc). The expression of key genes directly involved in VM/SNpc dopaminergic patterning, differentiation, and maturation (EN1, LMX1B, PITX3, NURR1, VMAT2, GIRK2, and dopamine transporter) is thus enhanced by Bcl-X(L). These effects on neurogenesis occur in parallel to a decrease in glia generation. These in vitro Bcl-X(L) effects are paralleled in vivo, after transplantation in hemiparkinsonian rats, where hVM1-Bcl-X(L) cells survive, integrate, and differentiate into DAn, alleviating behavioral motor asymmetry. Bcl-X(L) then allows for human fetal VM stem cells to stably generate mature SNpc DAn both in vitro and in vivo and is thus proposed as a helpful factor for the development of cell therapies for neurodegenerative conditions, Parkinson disease in particular.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2843236PMC
http://dx.doi.org/10.1074/jbc.M109.054312DOI Listing

Publication Analysis

Top Keywords

neural stem
16
stem cells
16
vitro vivo
8
human neural
8
cell therapies
8
parkinson disease
8
stem cell
8
human fetal
8
fetal stem
8
bcl-xl effects
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!