Gamma-secretase is an enzyme complex that mediates both Notch signaling and beta-amyloid precursor protein (APP) processing, resulting in the generation of Notch intracellular domain, APP intracellular domain, and the amyloid beta peptide (Abeta), the latter playing a central role in Alzheimer disease (AD). By a hitherto undefined mechanism, the activity of gamma-secretase gives rise to Abeta peptides of different lengths, where Abeta42 is considered to play a particular role in AD. In this study we have examined the role of the large hydrophilic loop (amino acids 320-374, encoded by exon 10) of presenilin 1 (PS1), the catalytic subunit of gamma-secretase, for gamma-secretase complex formation and activity on Notch and APP processing. Deletion of exon 10 resulted in impaired PS1 endoproteolysis, gamma-secretase complex formation, and had a differential effect on Abeta-peptide production. Although the production of Abeta38, Abeta39, and Abeta40 was severely impaired, the effect on Abeta42 was affected to a lesser extent, implying that the production of the AD-related Abeta42 peptide is separate from the production of the Abeta38, Abeta39, and Abeta40 peptides. Interestingly, formation of the intracellular domains of both APP and Notch was intact, implying a differential cleavage activity between the epsilon/S3 and gamma sites. The most C-terminal amino acids of the hydrophilic loop were important for regulating APP processing. In summary, the large hydrophilic loop of PS1 appears to differentially regulate the relative production of different Abeta peptides without affecting Notch processing, two parameters of significance when considering gamma-secretase as a target for pharmaceutical intervention in AD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2838274PMC
http://dx.doi.org/10.1074/jbc.M109.055590DOI Listing

Publication Analysis

Top Keywords

hydrophilic loop
16
large hydrophilic
12
gamma-secretase complex
12
app processing
12
amyloid beta
8
beta peptide
8
peptide abeta
8
notch processing
8
intracellular domain
8
abeta peptides
8

Similar Publications

A drop dispenser for simplifying on-farm detection of foodborne pathogens.

PLoS One

December 2024

Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, United States of America.

Nucleic-acid biosensors have emerged as useful tools for on-farm detection of foodborne pathogens on fresh produce. Such tools are specifically designed to be user-friendly so that a producer can operate them with minimal training and in a few simple steps. However, one challenge in the deployment of these biosensors is delivering precise sample volumes to the biosensor's reaction sites.

View Article and Find Full Text PDF

Closed-Loop Upcycling of Waste Nylon Plastic under Hydrothermal Clean Water Atmosphere.

Environ Sci Technol

December 2024

School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.

The extensive use and longevity of nylon plastics pose substantial challenges for plastic management, recycling, and pollution control. Depolymerization and monomer recycling are potential solutions for valorizing waste plastics, but they often rely on complex and costly catalysts. Additionally, various additives in nylon plastics can negatively impact the catalyst efficiency.

View Article and Find Full Text PDF

Since their inception in antibacterial therapy, macrolide-based antibiotics have significantly shaped the evolutionary pathways of pathogenic bacteria, driving them to develop diverse antimicrobial resistance (AMR) mechanisms. Among these, macrolide esterase, commonly referred to as erythromycin esterase, emerged as a critical defense mechanism, enabling bacteria to detoxify macrolides by hydrolyzing the macrolactone ring within the bacterial cell. In this study, we delve into the intricate interactions and conformational dynamics of erythromycin esterase C (EreC), a key member of the Ere enzyme family.

View Article and Find Full Text PDF

GPCR-like Protein ZmCOLD1 Regulate Plant Height in an ABA Manner.

Int J Mol Sci

November 2024

National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.

G protein-coupled receptors (GPCRs) are sensors for the G protein complex to sense changes in environmental factors and molecular switches for G protein complex signal transduction. In this study, the homologous gene of GPCR-like proteins was identified from maize and named as ZmCOLD1. Subcellular analysis showed that the ZmCOLD1 protein is localized to the cell membrane and endoplasmic reticulum.

View Article and Find Full Text PDF

Janus channel of membranes enables concurrent oil and water recovery from emulsions.

Science

November 2024

MOE Key Lab of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.

Existing separation technologies struggle to recover oil and water concurrently from surfactant-stabilized emulsions to achieve the goal of near-zero liquid discharge. We present a Janus channel of membranes (JCM) that features a confined architecture constructed of a pair of hydrophilic and hydrophobic membranes, which allows for concurrent, highly efficient recovery of oil and water from surfactant-stabilized emulsions. The confined Janus channel can amplify the interplay of the membrane pair through a feedback loop that involves enrichment and demulsification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!