Sorbent tubes/traps are widely used in combination with gas chromatographic (GC) analytical methods to monitor the vapour-phase fraction of organic compounds in air. Applications range from atmospheric research and ambient air monitoring (indoor and outdoor) to occupational hygiene (personal exposure assessment) and measuring chemical emission levels. Part 1 of this paper reviewed the main sorbent-based air sampling strategies including active (pumped) tube monitoring, diffusive (passive) sampling onto sorbent tubes/cartridges plus sorbent trapping/focusing of whole air samples that are either collected in containers (such as canisters or bags) or monitored online. Options for subsequent extraction and transfer to GC(MS) analysis were also summarised and the trend to thermal desorption (TD)-based methods and away from solvent extraction was explained. As a result of this trend, demand for TD-compatible sorbents (alternatives to traditional charcoal) is growing. Part 2 of this paper therefore continues with a summary of TD-compatible sorbents, their respective advantages and limitations and considerations for sorbent selection. Other analytical considerations for optimizing sorbent-based air monitoring methods are also discussed together with recent technical developments and sampling accessories which have extended the application range of sorbent trapping technology generally.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2010.01.015 | DOI Listing |
Med Mycol
January 2025
Fungal Infection Working Group, International Society of Antimicrobial Chemotherapy.
Invasive mould disease (IMD) has a high mortality in immunosuppressed patients. Invasive aspergillosis (IA) is the most common IMD. A guideline for preventing IA has been published jointly by the Centers for Diseases Control and Prevention, the Infectious Disease Society of America, and the American Society of Blood and Marrow Transplantation.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Environmental Health, Qingdao Municipal Center for Disease Control and Prevention, Qingdao Institute of Disease Prevention, Qingdao, Shandong, China.
Background: It is crucial to comprehend the interplay between air pollution and meteorological conditions in relation to population health within the framework of "dual-carbon" targets. The purpose of this study was to investigate the impact of intricate environmental factors, encompassing both meteorological conditions and atmospheric pollutants, on respiratory disease (RD) mortality in Qingdao, a representative coastal city in China.
Methods: The RD mortality cases were collected from the Chronic Disease Surveillance Monitoring System in Qingdao during Jan 1st, 2014 and Dec 31st, 2020.
Int Arch Occup Environ Health
January 2025
Xining Centre for Disease Control and Prevention, Xining, Qinghai, 810000, China.
Background: The unique characteristics of air pollution in high-altitude regions may significantly influence the transmission and incidence of influenza. However, current research on this phenomenon is limited, and further investigation is urgently needed.
Methods: This study collected influenza outpatient data from Qinghai Province between January 1, 2016, and December 31, 2021.
Environ Sci Technol
January 2025
Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States.
Deployment of large numbers of low capital cost sensors to increase the spatial density of air quality measurements enables applications that build on mapping air at neighborhood scales. Effective deployment requires not only low capital costs for observations but also a simultaneous reduction in labor costs. The Berkeley Environmental Air Quality and CO Network (BEACON) is a sensor network measuring O, CO, NO, and NO, particulate matter (PM), and CO at dozens of locations in cities where it is deployed.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol 2400, Belgium.
Exposure of lung epithelia to aerosols is omnipresent. Chronic exposure to polluted air is a significant factor in the development of pulmonary diseases, which are among the top global causes of death, including COVID-19, chronic obstructive pulmonary disease, lung cancer, and tuberculosis. As efforts to prevent and treat lung diseases increase, the development of pulmonary drug delivery systems has become a major area of interest.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!