Background And Purpose: Intravenous injection of the endocannabinoid anandamide induces complex cardiovascular changes via cannabinoid CB(1), CB(2) and vanilloid TRPV1 receptors. Recently, evidence has been accumulating that in vitro, but not in vivo, anandamide relaxes blood vessels, via an as yet unidentified, non-CB(1) vascular cannabinoid receptor, sensitive to O-1918 (1,3-dimethoxy-5-2-[(1R,6R)-3-methyl-6-(1-methylethenyl)-2-cyclohexen-1-yl]-benzene). We here examined whether the anandamide-induced hypotension in urethane-anaesthetized rats was also mediated via a non-CB(1) vascular cannabinoid receptor.

Experimental Approach: Effects of two antagonists (O-1918 and cannabidiol) of the non-CB(1) vascular cannabinoid receptor on anandamide-induced changes in mean, systolic and diastolic blood pressure (MBP, SBP, DBP), mesenteric (MBF) and renal (RBF) blood flow and heart rate (HR) in urethane-anaesthetized rats was examined.

Key Results: In anaesthetized rats, anandamide (1.5-3 micromol.kg(-1)) and its stable analogue methanandamide (0.5 micromol.kg(-1)) caused a delayed and prolonged decrease in MBP, SBP, DBP, MBF and RBF by about 10-30% of the respective basal values without changing HR. In pithed rats, anandamide (3 micromol.kg(-1)) decreased blood pressure by about 15-20% of the basal value without affecting HR, MBF and RBF. All vascular changes were reduced by about 30-70% by cannabidiol and O-1918 (3 micromol.kg(-1), each).

Conclusions And Implications: Non-CB(1) cannabinoid vascular receptors, sensitive to O-1918, contribute to the hypotensive effect of anandamide in anaesthetized rats. Activation of these receptors may be therapeutically important as the endocannabinoid system could be activated as a compensatory mechanism in various forms of hypertension.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2931558PMC
http://dx.doi.org/10.1111/j.1476-5381.2009.00579.xDOI Listing

Publication Analysis

Top Keywords

cannabinoid receptor
12
sensitive o-1918
12
anaesthetized rats
12
non-cb1 vascular
12
vascular cannabinoid
12
receptor sensitive
8
anandamide anaesthetized
8
urethane-anaesthetized rats
8
blood pressure
8
mbp sbp
8

Similar Publications

The endocannabinoid N-arachidonoylethanolamine (AEA) is a pro-homeostatic bioactive lipid known for its anti-inflammatory, anti-oxidative, immunomodulatory, and neuroprotective properties, which may contrast/mitigate Alzheimer's disease (AD) pathology. This study explores the therapeutic potential of targeting fatty acid amide hydrolase (FAAH), the major enzyme degrading AEA, in mouse models of amyloidosis (APP/PS1 and Tg2576). Enhancing AEA signaling by genetic deletion of FAAH delayed cognitive deficits in APP/PS1 mice and improved cognitive symptoms in 12-month-old AD-like mice.

View Article and Find Full Text PDF

In this study, we employed a novel fluorescent probe, RO7304924-which selectively targets cannabinoid 2 receptor (CB2R)-to assess the lateral mobility of CB2R within the plasma membrane of Chinese hamster ovary cells stably expressing a functional, untagged receptor variant. Utilizing confocal fluorescence recovery after photobleaching (FRAP), we quantified the diffusion coefficient and mobile fraction of CB2R, thereby demonstrating the efficacy of RO7304924 as an innovative tool for elucidating the dynamics of this major endocannabinoid-binding G protein-coupled receptor. Our present findings highlight the potential of combining advanced ligand-based fluorescent probes with FRAP for future investigations into the biochemical details of CB2R mobility in living cells, and its impact on receptor-dependent cellular processes.

View Article and Find Full Text PDF

Cannabinoid-based Pharmacology for the Management of Substance Use Disorders.

Curr Top Behav Neurosci

January 2025

Department of Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, USA.

In the last two decades, the endocannabinoid system has emerged as a crucial modulator of motivation and emotional processing. Due to its widespread neuroanatomical distribution and characteristic retrograde signaling nature, cannabinoid type I receptors and their endogenous ligands finely orchestrate somatic and axon terminal activity of dopamine neurons. Owing to these unique features, this signaling system is a promising pharmacological target to ameliorate dopamine-mediated drug-seeking behaviors while circumventing the adverse side effects of, for instance, dopaminergic antagonists.

View Article and Find Full Text PDF

Cannabinoid receptor 1 (CB1R) has been extensively studied as a potential therapeutic target for various conditions, including pain management, obesity, emesis, and metabolic syndrome. Unlike orthosteric agonists such as Δ-tetrahydrocannabinol (THC), cannabidiol (CBD) has been identified as a negative allosteric modulator (NAM) of CB1R, among its other pharmacological targets. Previous computational and structural studies have proposed various binding sites for CB1R NAMs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!