We report colloidal quantum dot (CQDs) photovoltaics having a approximately 930 nm bandgap. The devices exhibit AM1.5G power conversion efficiencies in excess of 2%. Remarkably, the devices are stable in air under many tens of hours of solar illumination without the need for encapsulation. We explore herein the origins of this orders-of-magnitude improvement in air stability compared to larger PbS dots. We find that small and large dots form dramatically different oxidation products, with small dots forming lead sulfite primarily and large dots, lead sulfate. The lead sulfite produced on small dots results in shallow electron traps that are compatible with excellent device performance; whereas the sulfates formed on large dots lead to deep traps, midgap recombination, and consequent catastrophic loss of performance. We propose and offer evidence in support of an explanation based on the high rate of oxidation of sulfur-rich surfaces preponderant in highly faceted large-diameter PbS colloidal quantum dots.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nn901564q | DOI Listing |
Chem Biomed Imaging
December 2024
College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 510632, China.
The large-scale preparation of fluorescent nanomaterials with laboratory-relevant chemical and optical properties will greatly forward their consumer market applications; however, it still remains challenging. In this work, a universal strategy was developed for the rapid and large-scale synthesis of fluorescent sulfur quantum dots that recently has drawn great attention because of their unique optical characteristics. From the fact that empty 3d orbitals of sulfide species are able to bind with lone-pair π electrons of the heteroatomic groups, many amino-group containing compounds, such as amino acid and polyethylenimine molecules, were exploited to synthesize sulfur quantum dots.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai 90110, Thailand.
The activated carbon from marigold flowers (MG) was used to make an unlabeled electrochemical immunosensor to determine prostate cancer. MG was synthesized by hydrothermal carbonization and pyrolysis. MG had a large surface area, was highly conductive, and biocompatible.
View Article and Find Full Text PDFNano Lett
December 2024
Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China.
Quantum dots (QDs) light-emitting diodes (QLEDs) are gaining significant interest for the next generation of display and lighting applications because of their wide color gamut, cost-effective solution processability, and good stability. The last decades have witnessed rapid advances in improving their efficiency and lifetime. So far, among the three primary colors of QLEDs devices, the performance of blue QLEDs is considerably inferior to that of green and red ones including Cd-based and Cd-free devices, which is a key bottleneck hindering QLEDs' application.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China.
Proteins are some of the most important components in living organisms. When nanoparticles enter a living system, they swiftly interact with proteins to produce the so-called "protein corona", which depicts the adsorption of proteins on large nanoparticles (normally tens to hundreds of nanometers). However, the sizes of small nanoparticles (typically, fluorescent nanomaterials such as quantum dots, noble metal nanoclusters, carbon dots, ) are less than 10 nm, which are comparable or even much smaller than those of proteins.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Research Laboratory of Dendrimers and Nanopolymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran.
Hydrogels are adaptable substances with a 3D framework able to hold large quantities of water, which is why they are ideal for use in the field of biomedicine. This research project focused on creating a new hydrogel combining carboxymethyl chitosan (CMCS), graphene quantum dots (GQDs), pectin (Pe), and MIL-88 for precise and controlled release of the cancer drug doxorubicin (DOX). The creation of CMCS/GQDs@Pe/MIL-88 hydrogel beads was achieved through an eco-friendly one-step synthesis method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!