BRCA1 and BRCA2 screening in women at high-risk of breast cancer results in the identification of both unambiguously defined deleterious mutations and sequence variants of unknown clinical significance (VUS). We examined a population-based sample of young women with contralateral breast cancer (CBC, n=705) or unilateral breast cancer (UBC, n=1398). We identified 470 unique sequence variants, of which 113 were deleterious mutations. The remaining 357 VUS comprised 185 unique missense changes, 60% were observed only once, while 3% occurred with a frequency of >10%. Deleterious mutations occurred three times more often in women with CBC (15.3%) than in women with UBC (5.2%), whereas combined, VUS were observed in similar frequencies in women with CBC and UBC. A protein alignment algorithm defined 16 rare VUS, occurring at highly conserved residues and/or conferring a considerable biochemical difference, the majority located in the BRCA2 DNA-binding domain. We confirm a multiplicity of BRCA1 and BRCA2 VUS that occur at a wide range of allele frequencies. Although some VUS inflict chemical differences at conserved residues, suggesting a deleterious effect, the majority are not associated with an increased risk of CBC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928257PMC
http://dx.doi.org/10.1002/humu.21202DOI Listing

Publication Analysis

Top Keywords

deleterious mutations
16
breast cancer
16
brca1 brca2
12
variants unknown
8
unknown clinical
8
clinical significance
8
sequence variants
8
women cbc
8
conserved residues
8
vus
6

Similar Publications

The growth and survival of cells with different fitness, such as those with a proliferative advantage or a deleterious mutation, is controlled through cell competition. During development, cell competition enables healthy cells to eliminate less fit cells that could jeopardize tissue integrity, and facilitates the elimination of pre-malignant cells by healthy cells as a surveillance mechanism to prevent oncogenesis. Malignant cells also benefit from cell competition to promote their expansion.

View Article and Find Full Text PDF

The cytotoxic T-lymphocyte antigen-4 (CTLA4) is essential in controlling T cell activity within the immune system. Thus, uncovering the molecular dynamics of single nucleotide polymorphisms (SNPs) within the CTLA4 gene is critical. We identified the non-synonymous SNPs (nsSNPs), examined their impact on protein stability, and identified the protein sequences associated with them in the human CTLA4 gene.

View Article and Find Full Text PDF

Recombination is advantageous over the long-term, as it allows efficient selection and purging deleterious mutations. Nevertheless, recombination suppression has repeatedly evolved in sex and mating-type chromosomes. The evolutionary causes for recombination suppression and the proximal mechanisms preventing crossing overs are poorly understood.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is a major health problem the world face currently and one of the leading causes of death worldwide. CRC is genetically heterogeneous and multiple genetic aberrations may appear on course of the disease throughout patient's lifetime. Genetic biomarkers such as BRAF, KRAS, and NRAS may provide early precision treatment options that are crucial for patient survival and well-being.

View Article and Find Full Text PDF

Precise modelling of mitochondrial diseases using optimized mitoBEs.

Nature

January 2025

Changping Laboratory, Beijing, The People's Republic of China.

The development of animal models is crucial for studying and treating mitochondrial diseases. Here we optimized adenine and cytosine deaminases to reduce off-target effects on the transcriptome and the mitochondrial genome, improving the accuracy and efficiency of our newly developed mitochondrial base editors (mitoBEs). Using these upgraded mitoBEs (version 2 (v2)), we targeted 70 mouse mitochondrial DNA mutations analogous to human pathogenic variants, establishing a foundation for mitochondrial disease mouse models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!