A generative model of microtubule distributions, and indirect estimation of its parameters from fluorescence microscopy images.

Cytometry A

Lane Center for Computational Biology and Center for Bioimage Informatics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.

Published: May 2010

The microtubule network plays critical roles in many cellular processes, and quantitative models of how its organization varies across cell types and conditions are required for understanding those roles and as input to cell simulations. High-throughput image acquisition technologies are potentially valuable for this purpose, but do not provide sufficient resolution for current analysis methods that rely on tracing of individual microtubules. We describe a parametric conditional model of microtubule distribution that can generate a microtubule network in intact cells using a persistent random walk approach. The model parameters are physically meaningful as they directly describe the spatial distribution of microtubules and include the number of microtubules as well as the mean of the length distribution. We also present an indirect method for estimating the parameters of the model from three-dimensional fluorescence microscope images of cells that relies on comparing acquired images with simulated images generated from the model. Our results show that our method can reasonably recover parameters for a given query image, and we present the distributions of parameters estimated by our method for a collection of HeLa cell images. (c) 2010 International Society for Advancement of Cytometry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2901542PMC
http://dx.doi.org/10.1002/cyto.a.20854DOI Listing

Publication Analysis

Top Keywords

model microtubule
8
microtubule network
8
parameters
5
images
5
generative model
4
microtubule
4
microtubule distributions
4
distributions indirect
4
indirect estimation
4
estimation parameters
4

Similar Publications

Radionuclides used for imaging and therapy can show high molecular specificity in the body with appropriate targeting ligands. We hypothesized that local energy delivered by molecularly targeted radionuclides could chemically activate prodrugs at disease sites while avoiding activation in off-target sites of toxicity. As proof of principle, we tested whether this strategy of radionuclide-induced drug engagement for release (RAiDER) could locally deliver combined radiation and chemotherapy to maximize tumor cytotoxicity while minimizing off-target exposure to activated chemotherapy.

View Article and Find Full Text PDF

Klp2-mediated Rsp1-Mto1 colocalization inhibits microtubule-dependent microtubule assembly in fission yeast.

Sci Adv

January 2025

MOE Key Laboratory for Cellular Dynamics and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.

Microtubule assembly takes place at the centrosome and noncentrosomal microtubule-organizing centers (MTOCs). However, the mechanisms controlling the activity of noncentrosomal MTOCs are poorly understood. Here, using the fission yeast as a model organism, we demonstrate that the kinesin-14 motor Klp2 interacts with the J-domain Hsp70/Ssa1 cochaperone Rsp1, an inhibitory factor of microtubule assembly, and that Klp2 is required for the proper localization of Rsp1 to microtubules.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, Shanghai, China.

Background: Pathological tau plays critical roles in many neurodegenerative diseases (NDD), including Alzheimer's disease (AD). However, the mechanisms underlying the initial tau pathogenesis are largely unknown. Extensive tau pathology has been observed in the brains with chronic traumatic encephalopathy (CTE), suggesting repeated traumatic brain injury (rTBI) correlates with tau pathogenesis.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.

Background: Genome-wide association studies (GWAS) in Alzheimer's disease (AD) leveraging endophenotypes beyond case/control diagnosis, such as brain amyloid β pathology, have shown promise in identifying novel variants and understanding their potential functional impact. In this study, we leverage two brain amyloid β pathology measurement modalities, PET imaging and neuropathology, to address sample size limitations and to discover novel genetic drivers of disease.

Method: We conducted a meta-analysis on an amyloid PET imaging GWAS (N = 7,036, 35% amyloid positive, 53.

View Article and Find Full Text PDF

Background: Non-coding RNA species, such as microRNA (miRNA), regulate multiple biological and pathological processes by binding to target mRNAs and facilitating alteration of translation levels via complexes such as RNA-induced silencing complex (RISC). Disrupting this process could contribute to AD pathogenesis by fostering aggregation of hyperphosphorylated microtubule-associated protein tau and amyloid-β (Aβ) peptides, and neuroinflammation. Understanding how these pathological changes are regulated remains our research focus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!