Diffusion coefficients of Cd-humate complexes are dependent on pH and [Cd]/[Humic] Acid (HA)] ratio in a Cd-HA system. These two factors mainly control the mass transport and complexation kinetics of Cd that may influence bioavailability and toxicity of Cd species in environmental systems. Determination of diffusion coefficients of Cd-HA systems by Scanned stripping voltammetry and dynamic light scattering techniques can provide a better understanding of the systems and can be very useful for extracting other speciation parameters of the systems. This study revealed that Cd(2+) ion along with small dynamic Cd complexes was predominantly present in a Cd-HA system at pH 5 with high diffusion coefficients. HA molecules were in aggregated form at pH 5. However, HA molecules were in disaggregated form at pH 6 and concentrations of Cd(2+) ion and small Cd-dynamic complexes decreased with a decrease in diffusion coefficients of Cd complexes at this pH due to formation of Cd-humate complexes. No further decrease in the hydrodynamic radii of HA was observed with the increase of pH from 6 to 7. The Cd-humate system partially lost its lability at pH 7. Conditional stability constants were calculated for Cd-humate complexes by combining the diffusion coefficient data obtained by two techniques. The log K values calculated in this study are in good agreement with the data available from the literature.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2009.11.043DOI Listing

Publication Analysis

Top Keywords

diffusion coefficients
20
cd-humate complexes
12
stability constants
8
scanned stripping
8
stripping voltammetry
8
voltammetry dynamic
8
dynamic light
8
light scattering
8
scattering techniques
8
cd-ha system
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!