Here we report a novel electrophoretic deposition technology for assembling surface-roughened inorganic nanoplatelets into ordered multilayers that mimic the brick-and-mortar nanostructure found in the nacreous layer of mollusk shells. A thin layer of sol-gel silica is coated on smooth gibbsite nanoplatelets in order to increase the surface roughness to mimic the asperity of aragonite platelets found in nacres. To avoid the severe cracking caused by the shrinkage of sol-gel silica during drying, polyelectrolyte polyethyleneimine is used to reverse the surface charge of silica-coated-gibbsite nanoplatelets and increase the adherence and strength of the electrodeposited films. Polymer nanocomposites can then be made by infiltrating the interstitials of the aligned nanoplatelet multilayers with photocurable monomer followed by photopolymerization. The resulting self-standing films are highly transparent and exhibit nearly three times higher tensile strength and one-order-of-magnitude higher toughness than those of pure polymer. The measured tensile strength agrees with that predicted by a simple shear lag model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2009.12.060 | DOI Listing |
Int J Biol Macromol
January 2025
College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China; Engineering Research Center of Oilfield Chemistry, Ministry of Education, Chengdu 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu 610500, PR China. Electronic address:
In this study, polyamide/silica/sodium alginate (SA) composite (PA-Si-SA) was successfully prepared in one-step benzoxazine-isocyanide chemistry (BIC)/sol-gel process at room temperature. The chemical structure and fundamental properties of PA-Si-SA were characterized by FT-IR, solid-state C NMR, XPS, XRD, SEM, BET and TG, etc. The presence of anionic SA and diverse N, O-containing functional segments (amide, tertiary amine, alkyl/phenol -OH, Si-O-Si, and COO) in PA-Si-SA endows it synergistic complexation capability toward Pb and Cd.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Material Science, BASF SE, RGA/BM-B007, Carl-Bosch-Str. 38, D-67056 Ludwigshafen, Germany.
The controlled formation and stabilization of nanoparticles is of fundamental relevance for materials science and key to many modern technologies. Common synthetic strategies to arrest growth at small sizes and prevent undesired particle agglomeration often rely on the use of organic additives and require non-aqueous media and/or high temperatures, all of which appear critical with respect to production costs, safety, and sustainability. In the present work, we demonstrate a simple one-pot process in water under ambient conditions that can produce particles of various transition metal carbonates and sulfides with sizes of only a few nanometers embedded in a silica shell, similar to particles derived from more elaborate synthesis routes, like the sol-gel process.
View Article and Find Full Text PDFGels
December 2024
Chemistry Department, Faculty of Science, Taibah University, Medina Munwarah 42353, Saudi Arabia.
This work presents a novel hydrothermally aided sol-gel method for preparation of mesoporous silica nanoparticles (MSNs) with a narrow particle size distribution and varied pore sizes. The method was carried out in alkaline media in presence of polyethylene glycol (PEG) and cetyltrimethylammonium chloride (CTAC) as dual templates and permitted the synthesis of spherical mesoporous silica with a high surface area (1011.42 m/g).
View Article and Find Full Text PDFRSC Adv
December 2024
Laboratory of Physics of Materials and Nanomaterials Applied at Environment (LaPhyMNE-LR05ES14), Faculty of Sciences in Gabes, Gabes University 6072 Gabes Tunisia
In the present study, a SiO/ZnSiO:Eu glass-ceramic composite was synthesized by a homemade modified sol-gel method. Structural, morphological, and optical properties were investigated. Structural and morphological analysis proves the existence of silica and zinc silicate phases with the latter surrounded and shielded by the silica matrix.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Chemistry, Division of Science and Technology, University of Education, College Road, Lahore, Pakistan. Electronic address:
Hydrogels are highly porous, hydrophilic, insoluble, 3D networks with a large capacity for water absorption. The goal of this research was to formulate sodium alginate/silica (SA/SiO) hydrogel and hydrogel nanocomposite (SA/SiO/ZnO-NPs) by impregnating the ZnO-NPs and cross-linking was furnished with siloxane network making use of the sol-gel method. The synthesized hydrogel/hydrogel nanocomposite was analyzed with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Zeta-sizer, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermo-gravimetric analyzer (TGA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!