Background: We describe a project to quantify the burden of heat and ozone on mortality in the UK, both for the present-day and under future emission scenarios.
Methods: Mortality burdens attributable to heat and ozone exposure are estimated by combination of climate-chemistry modelling and epidemiological risk assessment. Weather forecasting models (WRF) are used to simulate the driving meteorology for the EMEP4UK chemistry transport model at 5 km by 5 km horizontal resolution across the UK; the coupled WRF-EMEP4UK model is used to simulate daily surface temperature and ozone concentrations for the years 2003, 2005 and 2006, and for future emission scenarios. The outputs of these models are combined with evidence on the ozone-mortality and heat-mortality relationships derived from epidemiological analyses (time series regressions) of daily mortality in 15 UK conurbations, 1993-2003, to quantify present-day health burdens.
Results: During the August 2003 heatwave period, elevated ozone concentrations > 200 microg m-3 were measured at sites in London and elsewhere. This and other ozone photochemical episodes cause breaches of the UK air quality objective for ozone. Simulations performed with WRF-EMEP4UK reproduce the August 2003 heatwave temperatures and ozone concentrations. There remains day-to-day variability in the high ozone concentrations during the heatwave period, which on some days may be explained by ozone import from the European continent.Preliminary calculations using extended time series of spatially-resolved WRF-EMEP4UK model output suggest that in the summers (May to September) of 2003, 2005 & 2006 over 6000 deaths were attributable to ozone and around 5000 to heat in England and Wales. The regional variation in these deaths appears greater for heat-related than for ozone-related burdens.Changes in UK health burdens due to a range of future emission scenarios will be quantified. These future emissions scenarios span a range of possible futures from assuming current air quality legislation is fully implemented, to a more optimistic case with maximum feasible reductions, through to a more pessimistic case with continued strong economic growth and minimal implementation of air quality legislation.
Conclusion: Elevated surface ozone concentrations during the 2003 heatwave period led to exceedences of the current UK air quality objective standards. A coupled climate-chemistry model is able to reproduce these temperature and ozone extremes. By combining model simulations of surface temperature and ozone with ozone-heat-mortality relationships derived from an epidemiological regression model, we estimate present-day and future health burdens across the UK. Future air quality legislation may need to consider the risk of increases in future heatwaves.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2796504 | PMC |
http://dx.doi.org/10.1186/1476-069X-8-S1-S8 | DOI Listing |
J Hazard Mater
December 2024
School of Public Health, Guangzhou Medical University, Guangzhou 511436, China. Electronic address:
The burden of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and its oxidized products on human health can no longer be ignored due to the detection types and concentrations in the environment continue to increase. Environmental ozone (O) and ultraviolet A (UVA) may induce ozonation and photoaging of 6PPD to produce toxic products. However, the impact of specific environmental conditions on the aging and toxic effects of 6PPD is unclear.
View Article and Find Full Text PDFSci Total Environ
December 2024
Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
Epidemiologic studies of ambient fine particulate matter (PM) and ozone (O) often use outdoor concentrations from central-site monitors or air quality model estimates as exposure surrogates, which can result in exposure errors. We previously developed an exposure model called TracMyAir, which is an iPhone application that determines seven tiers of individual-level exposure metrics for ambient PM and O using outdoor concentrations, home building characteristics, weather, time-activities. The exposure metrics with increasing information needs and complexity include: outdoor concentration (C, Tier 1), building infiltration factor (F, Tier 2), indoor concentration (C, Tier 3), time spent in microenvironments (ME) (T, Tier 4), personal exposure factor (F, Tier 5), exposure (E, Tier 6), and inhaled dose (D, Tier 7).
View Article and Find Full Text PDFSci Rep
December 2024
Department of Epidemiology and Statistics, School of Public Health, Hebei Province Key Laboratory of Environment and Human Health, Hebei Medical University, 361 Zhongshan East Road, Shijiiazhuang, 050017, China.
This study aimed to discuss the effects of extreme temperatures and ozone on the incidence of varicella in Shijiazhuang City from 2014 to 2022, which provides new ideas for preventing public health events. METHODS We collected varicella cases in Shijiazhuang, China, from 2014 to 2022 and evaluated the relationship between temperature extremes and ozone on varicella incidence by building distributional lag nonlinear models. The analysis was stratified by age and sex, with 19,188 varicella cases reported.
View Article and Find Full Text PDFEnviron Res
December 2024
School of public health, Sun Yat-sen University, Guangzhou, Guangdong, China. Electronic address:
Background: No prior study has examined the mutual association of long-term outdoor ozone (O) concentration and physical activity (PA) with emotional and behavioral problems (EBPs) in children and adolescents. This study aims to investigate the association between long-term outdoor O concentration and the risk of EBPs in children and adolescents and further explore whether increased PA levels modify this association.
Methods: Data were obtained from the 2020 wave follow-up examination of an ongoing prospective cohort study (COHERENCE project) in Guangzhou, China.
Environ Toxicol Pharmacol
December 2024
São Paulo State University (UNESP), Medical School, Division of Anesthesiology, GENOTOX Lab., Botucatu, São Paulo, Brazil. Electronic address:
Waste anesthetic gases (WAGs) are trace-concentration inhaled anesthetics that exist worldwide because they are released into the ambient air of operating rooms (ORs) and post-anesthesia care units. WAGs cause indoor contamination, especially in ORs lacking proper scavenging systems, and occupational exposure, while promoting climate change through greenhouse gas/ozone-depleting effects. Despite these controversial features, WAGs continue to pose occupational health hazards.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!