Ischemia-reperfusion (IR) injury is an important cause of primary graft failure in lung transplantation. In this study, viral interleukin-10 (vIL-10)-engineered mesenchymal stem cells (MSCs) were tested for their ability to prevent lung IR injury. Bone marrow-derived MSCs were transduced with rvIL-10-retrovirus. After 120 min of warm left lung ischemia, rats received approximately 15 x 10(6) vIL-10-engineered MSCs (MSC-vIL-10), empty vector-engineered MSCs (MSC-vec), or saline intravenously. Mean blood oxygenation (PaO(2)/FiO(2) ratio, mmHg) was measured at 4 hr, 24 hr, 72 hr, and 7 days. As early as 4 hr post-IR injury with MSC-vIL-10 treatment, blood oxygenation was significantly (p < 0.05) improved (319 +/- 94; n = 7) compared with untreated (saline) controls (63 +/- 19; n = 6). At 24 hr post-IR injury, in the MSC-vIL-10-treated group there was a further increase in blood oxygenation (353 +/- 105; n = 10) compared with the MSC-vec group (138 +/- 86; n = 9) and saline group (87 +/- 39; n = 10). By 72 hr, oxygenation reached normal (475 +/- 55; n = 9) in the MSC-vIL-10-treated group but not in the saline-treated and MSC-vec-treated groups. At 4 hr after IR injury, lungs with MSC-vIL10 treatment had a lower (p < 0.05) injury score (0.9 +/- 0.4) compared with lungs of the untreated (saline) group (2.5 +/- 1.4) or MSC-vec-treated group (2 +/- 0.4). Lung microvascular permeability and wet-to-dry weight ratios were markedly lower in the MSC-vIL10 group compared with untreated (saline) controls. ISOL (in situ oligonucleotide ligation for DNA fragmentation detection) and caspase-3 staining demonstrated significantly (p < 0.05) fewer apoptotic cells in MSC-vIL10-treated lungs. Animals that received MSC-vIL10 therapy had fewer (p < 0.05) CD4(+) and CD8(+) T cells in bronchoalveolar lavage fluid compared with untreated control animals. A therapeutic strategy using vIL-10-engineered MSCs to prevent IR injury in lung transplantation seems promising.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/hum.2009.147 | DOI Listing |
Emergencias
December 2024
Department of Emergency Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seúl, República de Corea. Department of Digital Health, SAIHST, Sungkyunkwan University, Seúl, República de Corea.
Objective: To develop a Metabolic Derangement Score (MDS) based on parameters available after initial testing and assess the score's ability to predict survival after out-of hospital cardiac arrest (OHCA) and the likely usefulness of extracorporeal life support (ECLS).
Methods: A total of 5100 cases in the Korean Cardiac Arrest Research Consortium registry were included. Patients' mean age was 67 years, and 69% were men.
Inflamm Bowel Dis
January 2025
Division of Metabolism and Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa Hokkaido, 078-8510, Japan.
Background: Crohn's disease (CD) is a refractory inflammatory bowel disease with an unclear etiology. CircularRNA (circRNA) has been highlighted as a novel class of functional noncoding RNAs associated with the pathogenesis of various diseases. However, the functions of circRNA in CD remain unclear.
View Article and Find Full Text PDFBMJ Open
December 2024
Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
Introduction: Obstructive sleep apnoea (OSA) is characterised by blood oxygen desaturations and sleep disruptions manifesting undesirable consequences. Existing treatments including oral appliances, positive airway pressure (PAP) therapy and surgically altering the anatomy of the pharynx have drawbacks including poor long-term adherence or often involving irreversible, invasive procedures. Bilateral hypoglossal nerve stimulation (HNS) is a new treatment for managing OSA, and this study is intended to determine whether an HNS system is a safe and effective treatment option for adults with OSA.
View Article and Find Full Text PDFFluids Barriers CNS
January 2025
Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan.
Background: Cerebral autoregulation is a robust regulatory mechanism that stabilizes cerebral blood flow in response to reduced blood pressure, thereby preventing cerebral ischaemia. Scientists have long believed that cerebral autoregulation also stabilizes cerebral blood flow against increases in intracranial pressure, which is another component that determines cerebral perfusion pressure. However, this idea was inconsistent with the complex pathogenesis of normal pressure hydrocephalus, which includes components of chronic cerebral ischaemia due to mild increases in intracranial pressure.
View Article and Find Full Text PDFCardiovasc Diabetol
January 2025
Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Background: Diabetic myocardial disorder (DbMD, evidenced by abnormal echocardiography or cardiac biomarkers) is a form of stage B heart failure (SBHF) at high risk for progression to overt HF. SBHF is defined by abnormal LV morphology and function and/or abnormal cardiac biomarker concentrations.
Objective: To compare the evolution of four DbMD groups based on biomarkers alone, systolic and diastolic dysfunction alone, or their combination.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!