Membrane fouling results in flux decline or transmembrane pressure drop increase during membrane bioreactor (MBR) operation. Physical and chemical cleanings are essential to keep an MBR operating at an appropriate membrane flux. Considerable residual membrane permeability loss that cannot be removed by conventional cleaning requires membrane replacement. This study demonstrates that an internal biofilm can develop inside a hollow-fiber membrane and can probably account for up to 58.9 and 81.3% of total membrane resistance for aerobic granular MBR operated in sequencing batch reactor (SBR) mode or continuous-fed mode, respectively. The Arthrobacter sp. (accession no. AM900505 in GenBank) corresponded to internal biofilm development by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis and the agar-plating technique. This study also identifies a single strain, Arthrobacter sp., generates the internal biofilm. The Arthrobacter sp. is a rod-shaped bacterium with a size close to that of membrane pores, and can secrete excess bound proteins, hence can penetrate and attach itself inside the membrane and grow. Internal biofilm growth could contribute significantly to membrane resistance during long-term MBR operation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es9024657DOI Listing

Publication Analysis

Top Keywords

internal biofilm
20
membrane
11
biofilm growth
8
permeability loss
8
aerobic granular
8
mbr operation
8
membrane resistance
8
biofilm
5
influence internal
4
growth residual
4

Similar Publications

Background: Lipids are vital biomolecules involved in the formation of various biofilms. Seizures can cause changes in lipid metabolism in the brain. In-depth studies at multiple levels are urgently needed to elucidate lipid composition, distribution, and metabolic pathways in the brain after seizure.

View Article and Find Full Text PDF

Infectious complications in peritoneal dialysis (PD) remain a constant challenge, with atypical pathogens posing significant risks. This case from Thailand highlights the rare occurrence of , an often-overlooked non-tuberculous mycobacterium (NTM), as the causative agent in a catheter-related exit-site infection that progressed to peritonitis. Initially misattributed to  from preceding exit-site infections, was ultimately identified as the primary pathogen through multiple effluent cultures and advance polymerase chain reaction sequencing.

View Article and Find Full Text PDF

Occurrence of in drinking water sources and antimicrobial resistance profile in the central region of Peru.

Heliyon

January 2025

Laboratorio de Investigación de Aguas, Universidad Nacional del Centro del Perú, Av. Mariscal Castilla N° 3989-4089, Huancayo, Peru.

Introduction: Contamination of drinking water by can cause serious diseases, including cancer. The determinants of the infection rate are socioeconomic status, low standard of living and overcrowding. In addition, exposure to environmental sources contaminated with feces, such as water and vegetables, is another risk factor for infection.

View Article and Find Full Text PDF

Background: Invasive bacterial biofilms are implicated in colorectal cancer. However, their prevalence on histologically normal tissues and polyps is not well established, and risk factors of biofilms have not been previously investigated. Here we evaluated potential procedural and demographic risk factors associated with biofilm status using a cross-sectional observational cohort.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!