[Study on the influence of mineralizer on the structures and spectral properties of calcium aluminates].

Guang Pu Xue Yu Guang Pu Fen Xi

Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.

Published: November 2009

The present paper investigated the effect of mineralizer on the structure and properties of calcium aluminates formation. Calcium aluminates powder was synthesized under high temperature calcination by mixing bauxite, limestone and a certain amount of mineralizer. The product structure, compositional information and spectral properties were carefully characterized by XRD, IR and DTA-TG, and the mineralization mechanism of mineralizer was studied during the process of calcium aluminates preparation. The results showed that calcium aluminates powder could be obtained under lower temperature calcination after adding mineralizer to the raw materials. The main products of the reaction were CaAl10 O18 and CaAl2 Si2 O8 without mineralizer, however, the main products of the reaction were CaAl3 BO7 and Ca3 Al10 O18 with mineralizer, in which Al2 O3s could be extracted easily, while CaAl2 Si2 O8 was reduced greatly in which Al2 O3 could not be extracted easily. At the same time, it is easy for calcspar to decompose after adding mineralizer. It is favorable to Al-Si bond break and Al stripping from bauxite. These facts could improve the extraction rate of Al2 O3 from raw materials. Also, in the case of adding mineralizer to the raw mixes, the crystal structure and composition are changed, which is beneficial to reducing calcination temperature.

Download full-text PDF

Source

Publication Analysis

Top Keywords

calcium aluminates
16
adding mineralizer
12
mineralizer
9
spectral properties
8
properties calcium
8
aluminates powder
8
temperature calcination
8
mineralizer raw
8
raw materials
8
main products
8

Similar Publications

This article presents a new and facile method for the synthesis of Schiff base compounds with a benzimidazole group using a low-cost and reusable calcium aluminate nanophosphorus catalyst (CaAlO). This approach avoids harmful solvents and reactants, supporting a more environmentally friendly synthesis process. The catalyst maintained its activity and heterogeneity over four cycles with minimal loss of efficiency.

View Article and Find Full Text PDF

Objective: To evaluate the effect of a newly developed MTA-based material and two antibacterial-enhanced MTAs as pulp capping materials in immature permanent dental elements underwent full pulpotomy.

Methods: The present animal study included 20 Wistar albino rats that, after full pulpotomy, were randomly divided into 4 groups receiving different MTA formulations as pulp capping materials: conventional MTA, Tricalcium aluminate (TCA)- free MTA, and MTA enhanced with metronidazole or doxycycline. Histopathological assessments were carried out at 7- and 28-days post-treatment to evaluate dentinal bridge formation, inflammatory reactions, pulp tissue necrosis and internal resorption.

View Article and Find Full Text PDF

This study examines the impact of sodium citrate and a plasticizing additive, along with their sequential introduction into a cement slurry or concrete mix, on the heat evolution of the cement slurry, the microstructure, phase composition of the cement paste, and the compressive strength of fine-grained concrete. The binder used in this research was a blended binder consisting of 90% Portland cement and 10% calcium aluminate cement. This type of binder is characterized by an increased heat evolution and accelerated setting time.

View Article and Find Full Text PDF

Municipal solid waste incineration fly ash (MSWI FA) contains many harmful substances, such as heavy metals, which pose a great threat to the ecological environment. Its proper disposal is an urgent environmental problem that needs to be addressed. The large number of goaf areas in China's mines provides a new approach for MSWI FA treatment.

View Article and Find Full Text PDF

Broad band transmitting glasses from visible to mid-infrared with good mechanical strength, chemical durability, glass-forming ability, and thermal stability are preferred for optics and laser technology applications. Generally, low phonon energy glasses possess an extended transmission cutoff toward mid-infrared, but at the same time, retention of other desired properties is challenging for the researchers. In this work, we have shown that mixed alkaline earth (Ba/Sr) would have the potential to improve overall glass properties while retaining its low phonon energy when CaO is partially substituted by BaO/SrO in calcium magnesium zinc silica-aluminate (CMZSA) glass.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!