Ceria (CeO2) nanoparticles were prepared by precipitation method using cerium nitrate (Ce(NO3)3 x 6H2O) and ammonia (25 Wt%) as raw materials under the reaction for 3 h and ageing for 9 h at 80 degrees C without any surfactants and further calcination. The powder X-ray diffraction (XRD) pattern shows the as-prepared CeO2 crystals belong to the cubic phase and are well crystallized. Transmission electron microscopic (TEM) studies reveal that the appearance of as-prepared CeO2 is hexagonal, which is proposed to be the projection of polyhedral shape. The regular fringes spacing of 0.31 nm is in agreement with the d value of (111) lattice planes of cubic phase CeO2 from high-magnification TEM image. Reaction conditions such as the concentration of precipitant, reaction temperature and ageing duration exert important influence on the purity and morphology of the product. Ce(OH)3 was detected when the reaction was processed at lower pH (< 9) or with ageing duration less than 8 h at 80 degrees C. The size of polyhedral ceria nanoparticles increased with longer ageing time (> 15 h). If the reaction went on at a temperature lower than 40 degrees C, a large quantity of rodlike Ce(OH)3 was produced according to TEM observation. Raman spectra of CeO2 nanocrystallines exhibit a Raman shift at 465 cm(-1), corresponding to a F2g Raman band from the space group Fm3m of a cubic fluorite structure, while the Raman shift at about 600 cm(-1) may be attributed to the second Raman vibration mode of O2- vacancy due to Ce3+ impurity. Photoluminescence spectrum of CeO2 shows an emission at 465 nm at room temperature, which may be explained by charge transition from the 4f band to the valence band of CeO2.
Download full-text PDF |
Source |
---|
Nanoscale
January 2025
Photon Science Research Center for Carbon Dioxide, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
Oxygen vacancies (V's) are of paramount importance in influencing the properties and applications of ceria (CeO). Yet, comprehending the distribution and nature of V's poses a significant challenge due to the vast number of electronic configurations and intricate many-body interactions among V's and polarons (Ce ions). In this study, we established a cluster expansion model based on first-principles calculations and statistical learning to decouple the interactions among the Ce ions and V's, thereby circumventing the limitations associated with sampling electronic configurations.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China.
Supported noble metal catalysts have a high catalytic activity and selectivity. However, fast surface reconstruction and sintering of noble metal particles during a high-temperature reaction process pose a major challenge to the stability of the catalysts. In this study, sinter-resistant supported noble metal catalysts were prepared by constructing an oxide nanotrap.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Tianjin University, Department of Chemistry, #92, Weijin Road, Nankai District, Department of Chemistry, School of Science, Tianjin University, 300072, Tianjin, CHINA.
Electrocatalytic oxidation of cyclohexanol/cyclohexanonein water provides a promising strategy for obtaining adipic acid (AA), which is an essential feedstock in the polymer industry. However, this process is impeded by slow kinetics and limited Faradaic efficiency (FE) due to a poor understanding of the reaction mechanism. Herein, NiCo2O4/CeO2 is developed to enable the electrooxidation of cyclohexanol to AA with a 0.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071 China; Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo 315211 China. Electronic address:
The redox properties of iridium (Ir) active component are critically important in methane combustion. Interface engineering is highly effective in modulating the redox properties of active metals via tailoring the metal-support interaction (MSI). Herein, Ir catalysts supported on different carriers (TiO, CeO, AlO) were synthesized and evaluated for methane combustion.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
Developing high-energy-density lithium-sulfur batteries faces serious polysulfide shuttle effects and sluggish conversion kinetics, often necessitating the excessive use of electrolytes, which in turn adversely affects battery performance. Our study introduces a meticulously designed electrocatalyst, Cu-CeO@N/C, to enhance lean-electrolyte lithium-sulfur battery performance. This catalyst, featuring in situ synthesized Cu clusters, regulates oxygen vacancies in CeO and forms Cu-CeO heterojunctions, thereby diminishing sulfur conversion barriers and hastening reaction kinetics through the generation of S/S intermediates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!