Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A rapid and non-invasive method was put forward to measure the purity of hybrid rice seed by visible-near infrared reflectance spectra. Ninety hybrid rice seed samples (Yixiang 725) with the purity of 90%-99% were collected using a FieldSpec 3 visible-near infrared spectometer. All samples were divided randomly into two groups, one group with 75 samples used as calibrated set, and the other with 15 samples used as validated set. Based on the spectra in the range of 380-2 400 nm, the regression model was established using the PLS (partial least square), and different spectra pretreatment methods were compared. The study showed that spectra information can be extracted thoroughly by the pretreatment method of first derivative combined with standard normal variate, with the SEC (standard error of calibration) of 0.002 5, SEP (standard error of prediction) of 0.006 6, and determination coefficients of 0.988 4 (calibration set) and 0.922 7 (validation set) respectively. The spectra, which were pretreated with the method of first derivative combined standard normal variate, were analyzed by principal component analysis (PCA). The top 20 principal components, which were computed by PCA and accounted for 86.09% variation of the original spectral information, were used to build BP-ANN model for measuring the purity of hybrid rice seed as the new variables. The study showed that the SEC and SEP of BP-ANN model were 0.001 7 and 0.006 1, and the determination coefficients of that were 0.995 2 (calibration set) and 0.936 9 (validation set) respectively. Therefore, the predictive power of BP-ANN model was better than that of PLS model. Results indicated that it was feasible to measure the purity of the hybrid rice seed by visible-near reflectance spectra as a rapid and non-contact way, and PCA combined with BP-ANN was a preferred method.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!