A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

[Study on the application of supervised principal component regression procedure to near-infrared spectroscopy quantitative analysis]. | LitMetric

The present paper introduces the principle of a new modeling method, called supervised principal component regression, with which the model of the near-infrared (NIR) spectroscopy quantitative analysis was established. Usually, there are many difficulties such as collinearity when establishing the quantitative analysis model for the high dimension of the spectral data. Using this new method, firstly according to some criterion, the wavelength information is selected in order to reduce the dimension of spectral data. Then the selected lower dimensional spectral data set is used to establish the principal component regression model. Taking sixty-six wheat samples as experiment materials, forty samples were chosen randomly to establish the predicting model, while the remaining twenty-sixth wheat samples were viewed as prediction set. In this example, 4 wavelengths, 4 632, 4 636, 5 994 and 5 997 cm(-1), were selected at first according to the coefficients between the response variable and each spectral data. Then two principal components of the spectral data at those four wavelengths were extracted to establish the principal component regression model. The model was used to the prediction set. The coefficient was 0.991 and the average relative error was 1.5% between the model predication results and Kjeldahl's value for the protein content. It is very important to select the most significant part of wavelength information from a large number of spectral data, not only because this procedure can alleviate the influence of collinearity in modeling, but also because it can be used to guide the design of special NIR analysis instrument for analyzing specific component in some samples.

Download full-text PDF

Source

Publication Analysis

Top Keywords

spectral data
24
principal component
16
component regression
16
regression model
12
supervised principal
8
spectroscopy quantitative
8
quantitative analysis
8
dimension spectral
8
establish principal
8
wheat samples
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!