Quantitative values of metabolite concentrations in (1)H magnetic resonance spectroscopy have been obtained using the Electric REference To access In vivo Concentrations (ERETIC) method, whereby a synthetic reference signal is injected during the acquisition of spectra. The method has been improved to enable quantification of metabolite concentrations in vivo. Optical signal transmission was used to eliminate random fluctuations in ERETIC signal coupling to the receiver coil due to changes in position of cables and highly dielectric human tissue. Stability and reliability of the signal were tested in vitro, achieving stability with a mean error of 2.83%. Scaling of the signal in variable loading conditions was demonstrated and in-vivo measurements of brain were acquired on a 3T Philips system using a transmit/receive coil. The quantitative brain water and metabolite concentration values are in good agreement with those in the literature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/nbm.1476 | DOI Listing |
Comput Struct Biotechnol J
December 2024
Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol 2400, Belgium.
Exposure of lung epithelia to aerosols is omnipresent. Chronic exposure to polluted air is a significant factor in the development of pulmonary diseases, which are among the top global causes of death, including COVID-19, chronic obstructive pulmonary disease, lung cancer, and tuberculosis. As efforts to prevent and treat lung diseases increase, the development of pulmonary drug delivery systems has become a major area of interest.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Aarhus University, iNANO, Department of Chemistry, Langelandsgade 140, 8000, Aarhus C, DENMARK.
Solid-state batteries created from abundant elements, such as calcium, may pave the way for cheaper and safer electrical energy storage. Here we report a new type of solid calcium hydridoborate electrolyte, Ca(BH4)2·2NH2CH3, with a high ionic conductivity of σ(Ca2+) ~ 10-5 S cm-1 at T = 70 °C, which is assigned to a relatively open and flexible structure with apolar moieties and weak dihydrogen bonds that facilitate migration of Ca2+ ions in the solid state. The compound display a low electronic conductivity, providing an ionic transport number close to unity (tion = 0.
View Article and Find Full Text PDFAnn Intern Med
January 2025
Clinical Epidemiology and Research Center (CERC), Department of Biomedical Sciences, Humanitas University, and IRCCS Humanitas Research Hospital, Milan, Italy, and Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany (H.J.S.).
Description: Artificial intelligence (AI) has been defined by the High-Level Expert Group on AI of the European Commission as "systems that display intelligent behaviour by analysing their environment and taking actions-with some degree of autonomy-to achieve specific goals." Artificial intelligence has the potential to support guideline planning, development and adaptation, reporting, implementation, impact evaluation, certification, and appraisal of recommendations, which we will refer to as "guideline enterprise." Considering this potential, as well as the lack of guidance for the use of AI in guidelines, the Guidelines International Network (GIN) proposes a set of principles for the development and use of AI tools or processes to support the health guideline enterprise.
View Article and Find Full Text PDFInorg Chem
January 2025
Institute of Solid State Physics, TU Wien, A-1040 Vienna, Austria.
A novel ternary boride, NiPtB ( = 0.5), was obtained by argon-arc melting of the elements followed by annealing at 750 °C. It exhibits a new structure type with the space group ( = 2.
View Article and Find Full Text PDFSTAR Protoc
January 2025
Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY 10032, USA. Electronic address:
As Purkinje cells of the cerebellum have a very fast firing rate, techniques with high temporal resolution are required to capture cerebellar physiology. Here, we present a protocol to record physiological signals in humans using cerebellar electroencephalography (cEEG). We describe steps for electrode placement and recording.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!