The brain's activity can be measured in numerous complementary ways, including electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). The simultaneous acquisition of EEG and fMRI was originally developed to make the localization of the generators of often subtle pathological activity commonly observed in EEG recordings of patients with epilepsy more sensitive and spatially accurate by mapping their hemodynamic correlates. Now, the value of the information provided by simultaneous EEG-fMRI is being evaluated in a clinical context, while in parallel, more sophisticated data analysis techniques, e.g. with electrical source imaging or dynamic causal modeling, have begun to be applied to increase the technique's sensitivity and allow the study of brain network structure. Beyond its clinically oriented application in epilepsy, simultaneous EEG-fMRI recording has now gained interest as a tool for basic and systems human neuroscience, e.g. the study of neuro-vascular coupling and cognitive studies. In this review, we give an overview over the current use of simultaneous EEG-fMRI, its applications to the study of epilepsy as well as human cognition and systems neuroscience and ongoing and anticipated methodological developments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10334-009-0196-9 | DOI Listing |
Hum Brain Mapp
January 2025
The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA.
Evaluation of mechanisms of action of EEG neurofeedback (EEG-nf) using simultaneous fMRI is highly desirable to ensure its effective application for clinical rehabilitation and therapy. Counterbalancing training runs with active neurofeedback and sham (neuro)feedback for each participant is a promising approach to demonstrate specificity of training effects to the active neurofeedback. We report the first study in which EEG-nf procedure is both evaluated using simultaneous fMRI and controlled via the counterbalanced active-sham study design.
View Article and Find Full Text PDFFront Neurol
December 2024
Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China.
Neuroimage
January 2025
Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, PR China. Electronic address:
Commun Biol
November 2024
Sleep Unit, University of Ottawa Institute of Mental Health Research at The Royal, Ottawa, ON, Canada.
Sleep is essential for the optimal consolidation of newly acquired memories. This study examines the neurophysiological processes underlying memory consolidation during sleep, via reactivation. Here, we investigated the impact of slow wave - spindle (SW-SP) coupling on regionally-task-specific brain reactivations following motor sequence learning.
View Article and Find Full Text PDFNeurophysiol Clin
November 2024
Department of Neurosciences, Mater Misericordiae Hospital, Brisbane, Queensland, Australia; Mater Research Institute, Faculty of Medicine, University of Queensland, Australia; Queensland Brain Institute, University of Queensland, Australia.
Surgical resection for epilepsy often fails due to incomplete Epileptogenic Zone Network (EZN) localization from scalp electroencephalography (EEG), stereo-EEG (SEEG), and Magnetic Resonance Imaging (MRI). Subjective interpretation based on interictal, or ictal recordings limits conventional EZN localization. This study employs multimodal analysis using high-density-EEG (HDEEG), Magnetoencephalography (MEG), functional-MRI (fMRI), and SEEG to overcome these limitations in a patient with drug-resistant MRI-negative focal epilepsy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!