Parkinson's disease (PD) is caused by progressive degeneration of dopamine (DA) neurons in the substantia nigra pars compacta (SNpc), resulting in the deficiency of DA in the striatum. Thus, symptoms are developed, such as akinesia, rigidity and tremor. The aetiology of neuronal death in PD still remains unclear. Several possible mechanisms of the degeneration of dopaminergic neurons are still elusive. Various mechanisms of neuronal degeneration in PD have been proposed, including formation of free radicals, oxidative stress, mitochondrial dysfunction, excitotoxicity, calcium cytotoxicity, trophic factor deficiency, inflammatory processes, genetic factors, environmental factors, toxic action of nitric oxide, and apoptosis. All these factors interact with each other, inducing a vicious cycle of toxicity causing neuronal dysfunction, atrophy and finally cell death. Considerable evidence suggests that free radicals and oxidative stress may play key roles in the pathogenesis of PD. However, currently, drug therapy cannot completely cure the disease. DA replacement therapy with levodopa (L-Dopa), although still being a gold standard for symptomatic treatment of PD, only alleviates the clinical symptoms. Furthermore, patients usually experience severe side effects several years after the L-Dopa treatment. Until now, no therapy is available to stop or at least slow down the neurodegeneration in patients. Therefore, efforts are made not only to improve the effect of L-Dopa treatment for PD, but also to investigate new drugs with both antiparkinsonian and neuroprotective effects. Here, the advantages and limitations of current and future therapies for PD were dicussed. Current therapies include dopaminergic therapy, DA agonists, MAO-B inhibitor, COMT inhibitors, anticholinergic drugs, surgical procedures such as pallidotomy and more specifically deep brain stimulation of the globus pallidus pars interna (GPi) or subthalamic nucleus (STN), and stem cell transplantation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5552548 | PMC |
http://dx.doi.org/10.1007/s12264-010-0302-z | DOI Listing |
J Neurophysiol
January 2025
School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.
Parkinson's disease (PD) is a prevalent and challenging neurodegenerative disorder, and may involve impaired autophagy. Nuclear factor erythroid-2-related factor 2 (Nrf2) is crucial for regulating autophagy-related genes, maintaining cellular homeostasis. Electroacupuncture (EA), a complementary and alternative therapy for PD, has gained widespread clinical application.
View Article and Find Full Text PDFNeurol Sci
January 2025
Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
Objective: Corpus callosum (CC) damage is the most consistent and typical change in early Parkinson's disease (PD), and is associated with various PD symptoms. However, the precise relationship between CC subregions and specific PD symptoms have not been identified comprehensively. In this study, we investigated the association between specific CC subregion alterations and PD symptoms using diffusion-weighted imaging.
View Article and Find Full Text PDFJ Clin Invest
January 2025
Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA.
Single-cell transcriptomics applied to cerebrospinal fluid (CSF) for elucidating the pathophysiology of neurologic diseases has produced only a preliminary characterization of CSF immune cells. CSF derives from and borders central nervous system (CNS) tissue, allowing for comprehensive accounting of cell types along with their relative abundance and immunologic profiles relevant to CNS diseases. Using integration techniques applied to publicly available datasets in combination with our own studies, we generated a compendium with 139 subjects encompassing 135 CSF and 58 blood samples.
View Article and Find Full Text PDFJ Cancer
January 2025
Department of Spinal Surgery, Tianjin Union Medical Center, Tianjin, China.
Whether autoimmune diseases caused any effects on the risk of cancers remained yet clarified. This study aimed to investigate the causal effect of autoimmune diseases on pan-cancers through mendelian randomization (MR) analysis. The GWAS summary datasets of 10 autoimmune diseases were derived from the IEU or UK biobank website.
View Article and Find Full Text PDFFront Neurol
December 2024
Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States.
Introduction: The long-term effects of surgery for subthalamic nucleus deep brain stimulation (STN-DBS) on cognitive aspects of motor control for people with Parkinson's disease (PD) are largely unknown. We compared saccade latency and reach reaction time (RT) pre- and post-surgery while participants with PD were off-treatment.
Methods: In this preliminary study, we assessed people with PD approximately 1 month pre-surgery while OFF medication (OFF-MEDS) and about 8 months post-surgery while OFF medication and STN-DBS treatment (OFF-MEDS/OFF-DBS).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!