AI Article Synopsis

Article Abstract

BMS-645737, an inhibitor of vascular endothelial growth factor (VEGF) receptor-2 and fibroblast growth factor (FGF) receptor-1, has anti-angiogenic activity and was evaluated in nonclinical studies as a treatment for cancer. This article characterizes the BMS-645737-induced clinical, gross, and histologic lesions of incisor teeth in Sprague-Dawley (SD) rats. Rats received 0 800 mg/kg BMS-645737 in a single-dose study or consecutive daily doses of 0 20 mg/kg/day in a 1-month study. The reversibility of these effects was assessed in the 1-month study. White discoloration and fracture of incisors were observed clinically and grossly in the 1-month study. In both studies, dose-dependent histopathologic lesions of incisors were degeneration and/or necrosis of odontoblasts and ameloblasts; decreased mineralization of dentin; inflammation and necrosis of the dental pulp; and edema, congestion, and hemorrhage in the pulp and periodontal tissue adjacent to the enamel organ. Partial recovery was observed at lower doses after a two-week dose-free period in the one-month study. Drug-induced incisor lesions were considered to be related to the pharmacologic inhibitory effects on VEGF and FGF signaling, that is, inhibition of growth and maintenance of small-diameter vessels that support the formation of dentin and enamel in growing teeth and/or to perturbances of function of odontoblasts and ameloblasts or their precursors.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0192623309357950DOI Listing

Publication Analysis

Top Keywords

growth factor
12
1-month study
12
vascular endothelial
8
endothelial growth
8
odontoblasts ameloblasts
8
growth
5
study
5
incisor degeneration
4
degeneration rats
4
rats induced
4

Similar Publications

Background: Infertility is a significant issue in spinal cord injury (SCI) patients. Men with SCI often experience erectile and ejaculatory dysfunctions, and low sperm quality leading to impaired fertility. In this study, we investigated the effectiveness of Erythropoietin (EPO)alginate/chitosan (CH-AL) hydrogel on SCI-induced male rat infertility.

View Article and Find Full Text PDF

Photobiomodulation (PBM) therapy, a non-thermal light therapy using nonionizing light sources, has shown therapeutic potential across diverse biological processes, including aging and age-associated diseases. In 2023, scientists from the National Institute on Aging (NIA) Intramural and Extramural programs convened a workshop on the topic of PBM to discuss various proposed mechanisms of PBM action, including the stimulation of mitochondrial cytochrome C oxidase, modulation of cell membrane transporters and receptors, and the activation of transforming growth factor-β1. They also reviewed potential therapeutic applications of PBM across a range of conditions, including cardiovascular disease, retinal disease, Parkinson's disease, and cognitive impairment.

View Article and Find Full Text PDF

Introduction: Hematologic malignancies, originating from uncontrolled growth of hematopoietic and lymphoid tissues, constitute 6.5% of all cancers worldwide. Various risk factors including genetic disorders and single nucleotide polymorphisms play a role in the pathogenesis of hematologic malignancies.

View Article and Find Full Text PDF

∆-Tetrahydrocannabinol Increases Growth Factor Release by Cultured Adipose Stem Cells and Adipose Tissue in vivo.

Tissue Eng Regen Med

January 2025

Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.

Background: Because of its biocompatibility and its soft and dynamic nature, the grafting of adipose tissue is regarded an ideal technique for soft-tissue repair. The adipose stem cells (ASCs) contribute significantly to the regenerative potential of adipose tissue, because they can differentiate into adipocytes and release growth factors for tissue repair and neovascularization to facilitate tissue survival. The present study tested the effect of administering a chronic low dose of ∆-tetrahydrocannabinol (THC) on these regenerative properties, in vitro and in vivo.

View Article and Find Full Text PDF

P2YR-IGFBP2 signaling: new contributor to astrocyte-neuron communication.

Purinergic Signal

January 2025

International Joint Research Centre On Purinergic Signalling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.

In a recent article published in Nature Communications (Shigetomi et al Nat Commun 15(1):6525, 2024), Shigetomi et al. identified that upregulated astrocytic purinergic P2Y receptors (P2YR), acting via the downstream molecule, insulin-like growth factor binding protein 2 (IGFBP2), play a crucial role in neuronal hyperexcitability. In epilepsy and stroke models, P2YR-IGFBP2 signaling was found to mediate astrocyte-driven neuronal hyperexcitability and so is a new contributor to astrocyte-neuron communication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!