The membrane domain of human erythrocyte anion exchanger 1 (AE1) works as a Cl(-)/HCO(3)(-) antiporter. This exchange is a key step for CO(2)/O(2) circulation in the blood. In spite of their importance, structural information about AE1 and the AE (anion exchanger) family are still very limited. We used electron microscopy to solve the three-dimensional structure of the AE1 membrane domain, fixed in an outward-open conformation by cross-linking, at 7.5-A resolution. A dimer of AE1 membrane domains packed in two-dimensional array showed a projection map similar to that of the prokaryotic homolog of the ClC chloride channel, a Cl(-)/H(+) antiporter. In a three-dimensional map, there are V-shaped densities near the center of the dimer and slightly narrower V-shaped clusters at a greater distance from the center of the dimer. These appear to be inserted into the membrane from opposite sides. The structural motifs, two homologous pairs of helices in internal repeats of the ClC transporter (helices B+C and J+K), are well fitted to those AE1 densities after simple domain movement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2010.01.027 | DOI Listing |
Int J Mol Sci
January 2025
Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independenței Str., 050095 Bucharest, Romania.
Glycosylation is a critical post-translational modification that influences protein folding, stability and function. While extensively studied in extracellular and intracellular regions, glycosylation within transmembrane (TM) regions and at membrane interfaces remains poorly understood. This study aimed to map O- and N-glycosylation sites in these regions using a comprehensive database search and structural validation where possible.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Liaoning Engineering and Technology Research Center for Insect Resources, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China.
Chitin deacetylases (CDAs) are carbohydrate esterases associated with chitin metabolism and the conversion of chitin into chitosan. Studies have demonstrated that chitin deacetylation is essential for chitin organization and compactness and therefore influences the mechanical and permeability properties of chitinous structures, such as the peritrophic membrane (PM) and cuticle. In the present study, two genes ( and ) encoding CDA protein isoforms were identified and characterized in Chinese oak silkworm () larvae.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Food Technology, Department of Food Science and Technology, BOKU University, 1190 Vienna, Austria.
is a potential bacterial cell factory to develop delivery systems for vaccines and therapeutic proteins. Much progress has been made in applications using engineered against, e.g.
View Article and Find Full Text PDFPlants (Basel)
January 2025
School of Pharmacy and BioMolecular Sciences, Liverpool John Moores University, Byram Street, Liverpool L3 3AF, UK.
Protein S-acyl transferases (PATs) are a family of enzymes that catalyze protein S-acylation, a post-translational lipid modification involved in protein membrane targeting, trafficking, stability, and protein-protein interaction. S-acylation plays important roles in plant growth, development, and stress responses. Here, we report the genome-wide analysis of the family genes in the woodland strawberry (), a model plant for studying the economically important Rosaceae family.
View Article and Find Full Text PDFMolecules
December 2024
School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049, China.
The src-homology 2 domain-containing phosphatase 2 (SHP2) is a human cytoplasmic protein tyrosine phosphatase that plays a crucial role in cellular signal transduction. Aberrant activation and mutations of SHP2 are associated with tumor growth and immune suppression, thus making it a potential target for cancer therapy. Initially, researchers sought to develop inhibitors targeting SHP2's catalytic site (protein tyrosine phosphatase domain, PTP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!