AI Article Synopsis

Article Abstract

Few simple labeling methods exist for simultaneous fluorescence and electron microscopy of bacteria and biofilms. Here we describe the synthesis, characterization, and application of fluorescent nanoparticle quantum dot (QD) conjugates to target microbial species, including difficult to label Gram-negative strains. These QD conjugates impart contrast for both environmental scanning electron microscopy (ESEM) and fluorescence microscopy, permitting observation of living and fixed bacteria and biofilms. We apply these probes for studying biofilms extracted from perennial cold springs in the Canadian High Arctic, which is a particularly challenging system. In these biofilms, sulfur-metabolizing bacteria live in close association with unusual sulfur mineral formations. Following simple labeling protocols with the QD conjugates, we are able to image these organisms in fully-hydrated samples and visualize their relationship to the sulfur minerals using both ESEM and fluorescence microscopy. We then use scanning transmission electron microscopy to observe precipitated sulfur around individual cells and within the biofilm lattice. All combined, this information sheds light on the possible mechanisms of biofilm and mineral structure formation. These new QD conjugates and techniques are highly transferable to many other microbiological applications, especially those involving Gram-negative bacteria, and can be used for correlated fluorescence and electron microscopy.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S1431927609991334DOI Listing

Publication Analysis

Top Keywords

electron microscopy
20
fluorescence electron
12
simple labeling
8
bacteria biofilms
8
esem fluorescence
8
fluorescence microscopy
8
microscopy
7
fluorescence
5
electron
5
bacterial mineral
4

Similar Publications

Proteomic analysis of Trichoderma harzianum secretome and their role in the biosynthesis of zinc/iron oxide nanoparticles.

Sci Rep

January 2025

Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, 7600, Argentina.

The fungal green synthesis of nanoparticles (NPs) has gained great interest since it is a cost-effective and easy handling method. The process is simple because fungi secrete metabolites and proteins capable of reducing metal salts in aqueous solution, however the mechanism remains largely unknown. The aim of this study was to analyze the secretome of a Trichoderma harzianum strain during the mycobiosynthesis process of zinc and iron nanoparticles.

View Article and Find Full Text PDF

A label-free, flexible, and disposable aptasensor was designed for the rapid on-site detection of vancomycin (VAN) levels. The electrochemical sensor was based on lab-printed carbon electrodes (C-PE) enriched with cauliflower-shaped gold nanostructures (AuNSs), on which VAN-specific aptamers were immobilized as biorecognition elements and short-chain thiols as blocking agents. The AuNSs, characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), enhanced the electrochemical properties of the platform and the aptamer immobilization active sites.

View Article and Find Full Text PDF

Recent studies have suggested that sVEGFR3 is involved in cardiac diseases by regulating lymphangiogenesis; however, results are inconsistent. The aim of this study was to investigate the function and mechanism of sVEGFR3 in myocardial ischemia/reperfusion injury (MI/RI). sVEGFR3 effects were evaluated in vivo in mice subjected to MI/RI, and in vitro using HL-1 cells exposed to oxygen-glucose deprivation/reperfusion.

View Article and Find Full Text PDF

Magnetic nanoparticles of Nd2Fe14B prepared by ethanol-assisted wet ball milling technique.

Sci Rep

January 2025

Environmental and Occupational Hazards Control Research Center, Research Institute for Health Sciences and Environment, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

The magnetic material Nd2Fe14B is one of the strongest magnetic materials found in nature. The demand for the production of these nanoparticles is significantly high due to their exceptional properties. The aim of the present study is to synthesize magnetic nanoparticles of Nd2Fe14B using ethanol in the wet ball milling technique (WBMT).

View Article and Find Full Text PDF

Microtiter-plate-based systems are unified platforms of high-throughput experimentation (HTE). These polymeric devices are used worldwide on a daily basis-mainly in the pharmaceutical industry-for parallel syntheses, reaction optimization, various preclinical studies and high-throughput screening methods. Accordingly, laboratory automation today aims to handle these commercially available multiwell plates, making developments focused on their modifications a priority area of modern applied research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!