Direct insights on flax fiber structure by focused ion beam microscopy.

Microsc Microanal

LAMIPS, Joint Laboratory NXP-CRISMAT, CNRS-UMR, ENSICAEN, UCBN, Caen, France.

Published: April 2010

In this article, it is shown that focused ion beam (FIB) systems can be used to study the inner structure of flax fibers, the use of which as a reinforcing material in polymer composites still draws much interest from multiple disciplines. This technique requires none of the specific preparations necessary for scanning electron microscopy or transmission electron microscopy studies. Irradiation experiments performed on FIB prepared cross sections with very low Ga+ ion beam currents revealed the softer material components of fibers. Thus, it confirmed the presence of pectin-rich layers at the interfaces between the fibers of a bundle, but also allowed the precise localization of such layers within the secondary cell wall. Furthermore, it suggested new insights on the transition modes between the sublayers of the secondary cell wall.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S1431927609991292DOI Listing

Publication Analysis

Top Keywords

ion beam
12
focused ion
8
electron microscopy
8
secondary cell
8
cell wall
8
direct insights
4
insights flax
4
flax fiber
4
fiber structure
4
structure focused
4

Similar Publications

Precise measurements of fundamental decay data such as energies and transition probabilities of radioactive isotopes are important for the development of corresponding nuclear modelling, activity determination and various applications in science and technology. The EMPIR project PrimA-LTD -"Towards new Primary Activity standardisation methods based on Low-Temperature Detectors" - aims to measure the electron-capture decay of Fe very precisely using Metallic Microcalorimeters (MMCs) with outstandingly high energy resolution. Using a high-statistics measurement, electron-capture probabilities shall be precisely determined and higher-order effects such as electron shake-up and shake-off shall be examined with unprecedented precision.

View Article and Find Full Text PDF

A simple cavity-enhanced laser-based heater for reflective samples.

Rev Sci Instrum

January 2025

Institute for Physical Chemistry, University of Göttingen, 37077 Göttingen, Germany.

Surface science instruments require excellent vacuum to ensure surface cleanliness; they also require control of sample temperature, both to clean the surface of contaminants and to control reaction rates at the surface, for example, for molecular beam epitaxy and studies of heterogeneous catalysis. Standard approaches to sample heating within high vacuum chambers involve passing current through filaments of refractory metals, which then heat the sample by convective, radiative, or electron bombardment induced heat transfer. Such hot filament methods lead to outgassing of molecules from neighboring materials that are inadvertently heated; they also produce electrons and ions that may interfere with other aspects of the surface science experiment.

View Article and Find Full Text PDF

Determination of the degree of sulfonation in cross-linked and non-cross-linked Poly(ether ether ketone) using different analytical techniques.

Heliyon

January 2025

Division of Polymer Chemistry, Department of Chemistry, Atomic Energy Commission, P.O. Box: 6091, Damascus, Syrian Arab Republic.

The degree of sulfonation (DS) is a key property of sulfonated polymers, as it significantly influences their swelling behaviour, conductivity and mechanical properties. Accurately determining the DS is essential for optimizing these materials for various applications. In this work, the DS of sulfonated poly (ether ether ketone) (SPEEK) was evaluated using a combination of analytical techniques, including titration, back titration, Fourier Transform Infrared (FTIR), Ultra-Violet (UV) and proton nuclear magnetic resonance (H NMR) spectroscopies, Thermogravimetric analysis (TGA), Rutherford backscattering (RBS) and particle induced X-ray emission (PIXE) analysis.

View Article and Find Full Text PDF

Background: Radiotherapy as a complement or an alternative to neurosurgery has a central role in the treatment of skull base grade I-II meningiomas. Radiotherapy techniques have improved considerably over the last two decades, becoming more effective and sparing more and more the healthy tissue surrounding the tumour. Currently, hypo-fractionated stereotactic radiotherapy (SRT) for small tumours and normo-fractionated intensity-modulated radiotherapy (IMRT) or proton-therapy (PT) for larger tumours are the most widely used techniques.

View Article and Find Full Text PDF

Ion beam induced secondary electron tomography of acrylonitrile-styrene-acrylate/polycarbonate polymer blends for fused filament fabrication and injection moulding.

Sci Rep

January 2025

Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Orgánica, IMEYMAT, Universidad de Cádiz, Campus Río San Pedro, 11510, Puerto Real, Cádiz, Spain.

Polymer blending is an interesting strategy to broaden the combination of properties available for a variety of applications. To understand the behaviour of the new materials obtained as well as the influence of the fabrication parameters used, methods to analyse the distribution of polymers in the blend with resolution below the micrometer are required. In this work, we demonstrate the capability of focused ion beam (FIB) tomography to provide 3D information of the polymer distribution in objects obtained by blending acrylonitrile-styrene-acrylate (ASA) with polycarbonate (PC) (50 wt%), fabricated by Fused Filament Fabrication (FFF) and by Injection Moulding (IM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!