Bacillus thuringiensis is a gram-positive spore-forming bacterium that can accumulate poly(3-hydroxybutyrate) (PHB) as a carbon and energy storage substance in response to nutritional stress. The regulatory mechanism for PHB biosynthesis in B. thuringiensis and diverse Bacillus species is still poorly understood. We now report that disruption of the sigH gene or the gene encoding the master sporulation transcription factor Spo0A severely impaired PHB accumulation in B. thuringiensis. Complementation of the spo0A mutation with the spo0A gene restored PHB accumulation. We have found that the requirement of Spo0A for PHB accumulation is independent of the transition state regulator AbrB and of loss of sporulation ability. We also show that Spo0A is required for the expression of three genes involved in PHB biosynthesis. These findings have uncovered a new role of Spo0A in the regulation of stationary-phase-associated cellular events.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1574-6968.2010.01888.xDOI Listing

Publication Analysis

Top Keywords

phb accumulation
16
phb biosynthesis
12
transcription factor
8
factor spo0a
8
spo0a required
8
phb
8
poly3-hydroxybutyrate phb
8
genes involved
8
involved phb
8
bacillus thuringiensis
8

Similar Publications

Recent advances in engineering non-native microorganisms for poly(3-hydroxybutyrate) production.

World J Microbiol Biotechnol

January 2025

Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.

Poly(3-hydroxybutyrate) (PHB) is a biodegradable polymer that belongs to a group of polymers called polyhydroxyalkanoates (PHAs). PHB can be synthesized from renewable resources, making it a promising alternative to petroleum-derived plastics. It is also considered non-toxic, biodegradable, and biocompatible, which makes it suitable for various applications in the medicine and biomedicine.

View Article and Find Full Text PDF

Introduction of acetyl-phosphate bypass and increased culture temperatures enhanced growth-coupled poly-hydroxybutyrate production in the marine cyanobacterium Synechococcus sp. PCC7002.

Metab Eng

January 2025

Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan; Research Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan. Electronic address:

Polyhydroxyalkanoate (PHA) is an attractive bio-degradable plastic alternative to petrochemical plastics. Photosynthetic cyanobacteria accumulate biomass by fixing atmospheric CO, making them promising hosts for sustainable PHA production. Conventional PHA production in cyanobacteria requires prolonged cultivation under nutrient limitation to accumulate cellular PHA.

View Article and Find Full Text PDF

Introduction: The present study examined Polyhydroxy butyrate production (PHB) potential of different photosynthetic microbes such as Chlorella vulgaris, Scenedesmus obliquus and Rhodobacter capsulatus-PK under different nutrient conditions. Biodegradable bioplastics, such as Poly-β-hydroxybutyrates (PHB), derived from these microbes provide a sustainable alternative to conventional petroleum-based nondegradable plastics.

Background: As the demand for clean and sustainable alternatives rises, bio-plastic is gaining attention as a viable substitute to conventional plastics.

View Article and Find Full Text PDF

The fermentation process in alcoholic beverage production converts sugars into ethanol and CO, releasing significant amounts of greenhouse gases. Here, Cupriavidus necator DSM 545 was grown autotrophically using gas derived from alcoholic fermentation, using a fed-batch bottle system. Nutrient starvation was applied to induce intracellular accumulation of poly(3-hydroxybutyrate) (PHB), a bioplastic polymer, for bioconversion of CO-rich waste gas into PHB.

View Article and Find Full Text PDF

Planar hexacoordination is an extremely uncommon phenomenon for the atoms that belong to the main group. Within this article, we have analyzed the potential energy surfaces (PES) of ABeCB (A = N, P, As, Sb, and Bi) clusters in neutral, monocationic, monoanionic, dicationic, and dianionic states using density functional theory (DFT). Among which PBeCB, PBeCB, AsBeCB, AsBeCB, SbBeCB, and BiBeCB clusters contain a planar hexacoordinate boron (phB) atom in the global minimum energy structures with symmetry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!