Bubble profile analysis tensiometry is used to study the surface rheological behavior of mixed SDS/C(12)EO(5) and SDS/C(14)EO(8) solutions. The experimental dependencies of the viscoelasticity modulus and phase angle are studied in a wide range of surfactant concentrations of the individual sodium dodecyl sulfate (SDS) and C(m)EO(n) solutions and SDS/C(n)EO(m) mixtures at various mixing ratios. By generating harmonic oscillations of the bubble area at low oscillation amplitudes, the relaxation behavior at oscillation frequencies between 0.005 and 0.2 Hz was studied. The applied theoretical approach to describe the dilational rheology of surfactant mixtures requires the specification of the equations of state of the mixed surface layer and the adsorption isotherm of the mixture's components. For the systems studied, the theoretical model considers different adsorption mechanisms for the different surfactants. In particular, the adsorption behavior of oxyethylated surfactants was described by the reorientation model (assumes two adsorption states of surfactant molecules with different molar areas), including an intrinsic compressibility of molecules in the state of minimal area. For the SDS component, the adsorption was assumed to be governed by the Frumkin model, which also accounts for the intrinsic compressibility. Satisfactory agreement between experimental data and theoretical calculations of the viscoelasticity modulus and the phase angle is obtained.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la9024926DOI Listing

Publication Analysis

Top Keywords

viscoelasticity modulus
8
modulus phase
8
phase angle
8
intrinsic compressibility
8
adsorption
6
adsorption layer
4
layer characteristics
4
characteristics mixed
4
mixed sds/cneom
4
sds/cneom solutions
4

Similar Publications

Mechanical Wear of Degraded Articular Cartilage.

Ann Biomed Eng

January 2025

School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA.

Purpose: To evaluate the mechanical wear of cartilage with different types of degradation.

Methods: Bovine osteochondral explants were treated with interleukin-1β (IL-1β) to mimic inflammatory conditions, with chondroitinase ABC (ChABC) to specifically remove glycosaminoglycans (GAGs), or with collagenase to degrade the collagen network during 5 days of culture. Viscoelastic properties of cartilage were characterized via indentation.

View Article and Find Full Text PDF

Piezoresistive Cantilever Microprobe with Integrated Actuator for Contact Resonance Imaging.

Sensors (Basel)

January 2025

Institute of Semiconductor Technology (IHT), Technische Universität Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, Germany.

A novel piezoresistive cantilever microprobe (PCM) with an integrated electrothermal or piezoelectric actuator has been designed to replace current commercial PCMs, which require external actuators to perform contact-resonance imaging (CRI) of workpieces and avoid unwanted "forest of peaks" observed at large travel speed in the millimeter-per-second range. Initially, a PCM with integrated resistors for electrothermal actuation (ETA) was designed, built, and tested. Here, the ETA can be performed with a piezoresistive Wheatstone bridge, which converts mechanical strain into electrical signals by boron diffusion in order to simplify the production process.

View Article and Find Full Text PDF

The structure of thermoset composite laminated plates is made by stacking layers of plies with different fiber orientations. Similarly, the stiffened panel structure is assembled from components with varying ply configurations, resulting in thermal residual stresses and processing-induced deformations (PIDs) during manufacturing. To mitigate the residual stresses caused by the geometric features of corner structures and the mismatch between the stiffener-skin ply orientations, which lead to PIDs in composite-stiffened panels, this study proposes a multi-objective stacking optimization strategy based on an improved adaptive genetic algorithm (IAGA).

View Article and Find Full Text PDF

This study aimed to investigate the effects of laminarin (LA) and ferulic acid (FA) on the gelatinization, rheological properties, freeze-thaw stability, and digestibility of cassava starch (CS). The results indicated that LA increased the peak viscosity, trough viscosity, final viscosity, storage modulus, and loss modulus of CS, while decreasing the breakdown viscosity. Conversely, FA exerted opposite effects.

View Article and Find Full Text PDF

This study evaluated the properties of lentil protein, pea protein, quinoa protein, and soy protein as natural nanoparticle stabilizers and their interactions with pectin and chitin nanofiber in preparing high internal phase Pickering emulsions (HIPPEs). The globular plant proteins interact with polysaccharides through hydrogen bonding and electrostatic interactions, transforming the structure into complex morphologies, including fibrous and elliptical shapes. These complex nanoparticles exhibited enhanced thermal decomposition stability, and the HIPPEs constructed by them demonstrated significantly improved apparent viscosity and elastic modulus, with a yield stress of 931.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!