It is shown that non-covalent attachment of streptavidin, as well as of avidin, to biotinylated human erythrocytes induces homologous hemolysis by complement. Rabbit antiserum against human C3 is found to inhibit the lysis specifically as compared with non-immune rabbit serum. Efficiency of lysis inhibition is greater for avidin- and streptavidin-induced lysis of biotinylated human erythrocytes than for antibody-sensitized sheep erythrocytes. In contrast to positively charged avidin (pI 11), streptavidin is a neutral protein. Hence, hemolysis of streptavidin-carrying erythrocytes is inconsistent with the suggestion on the crucial role of avidin charge in lysis. Membrane alterations (cross-linking and clusterization of biotinylated components) induced by avidin (streptavidin) seem to be a more plausible explanation for the lysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0014-5793(91)80216-pDOI Listing

Publication Analysis

Top Keywords

streptavidin-induced lysis
8
role avidin
8
avidin charge
8
biotinylated human
8
human erythrocytes
8
avidin streptavidin
8
erythrocytes
5
avidin
5
lysis
5
lysis homologous
4

Similar Publications

In vivo application of red blood cells (RBC) modified with avidin-biotin complex has been suggested recently for various purposes. However, avidin attachment to RBC alters their biocompatibility. Thus, it has been described that avidin-carrying biotinylated RBC were lysed by the complement.

View Article and Find Full Text PDF

It is shown that non-covalent attachment of streptavidin, as well as of avidin, to biotinylated human erythrocytes induces homologous hemolysis by complement. Rabbit antiserum against human C3 is found to inhibit the lysis specifically as compared with non-immune rabbit serum. Efficiency of lysis inhibition is greater for avidin- and streptavidin-induced lysis of biotinylated human erythrocytes than for antibody-sensitized sheep erythrocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!