Fat/water separation methods such as fluctuating equilibrium magnetic resonance and linear combination steady-state free precession have not yet been successfully implemented at 3.0 T due to extreme limitations on the time available for spatial encoding with the increase in magnetic field strength. We present a method to utilize a three-dimensional radial sequence combined with linear combination steady-state free precession at 3.0 T to take advantage of the increased signal levels over 1.5 T and demonstrate high spatial resolution compared to Cartesian techniques. We exploit information from the two half-echoes within each pulse repetition time to correct the accumulated phase on a point-by-point basis, thereby fully aligning the phase of both half-echoes. The correction provides reduced sensitivity to static field (B(0)) inhomogeneity and robust fat/water separation. Resultant images in the knee joint demonstrate the necessity of such a correction, as well as the increased isotropic spatial resolution attainable at 3.0 T. Results of a clinical study comparing this sequence to conventional joint imaging sequences are included.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrm.22284 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!