Micropropagation and organogenesis of Anthurium andreanum Lind cv Rubrun.

Methods Mol Biol

Laboratorio de Mejoramiento Vegetal, Centro de Botánica Tropical, Instituto de Biología Experimental, Facultad de Ciencias, Universidad Central de Venezuela, Los Chaguaramos, Caracas, Venezuela.

Published: February 2010

Tissue culture techniques are routinely used for mass propagation and the establishment of disease free stock material. Virtually all pot type Anthuriums available in the market today are produced by tissue culture. In this chapter, we describe an efficient protocol to obtain Anthurium andreanum cv Rubrun vitro plants through micropropagation and organogenesis. Seeds from plant spadixes were germinated on MS medium supplemented with 0.5 mg/L BA. Micro-cuttings from in vitro germinated seedlings were subcultured on MS medium containing 2 mg/L BA and 0.5 mg/L NAA. Four-week-old in vitro plants obtained from microcuttings, showed callus proliferation at the stem base. The development of shoots and plantlets was observed from callus tissue. We also describe a detailed method for the histological analysis of callus tissue and a vitro plants acclimatization protocol.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-60327-114-1_1DOI Listing

Publication Analysis

Top Keywords

vitro plants
12
micropropagation organogenesis
8
anthurium andreanum
8
tissue culture
8
callus tissue
8
organogenesis anthurium
4
andreanum lind
4
lind rubrun
4
tissue
4
rubrun tissue
4

Similar Publications

Background: (Lour.) Merr. is a plant used in traditional Chinese medicine that reduces hepatotoxicity, relieves kidney discomfort, and has anti-inflammatory and antioxidant properties.

View Article and Find Full Text PDF

Introduction: The mortality rate for liver cancer is extremely high but clinical treatments have not made much progress, so it is necessary to develop anticancer agents with lower toxicities and more effective liver-targeting drug delivery systems (LTDDSs). At present, LTDDSs mediated by the asialoglycoprotein receptor (ASGPR) show excellent effects at improving the liver-targeting and antitumor effects of drugs. However, the galactosyl ligands are typically prepared by chemical synthesis and have some shortcomings.

View Article and Find Full Text PDF

Grapevine cell response to carbon deficiency requires transcriptome and methylome reprogramming.

Hortic Res

January 2025

Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d'Ornon, France.

Sugar limitation has dramatic consequences on plant cells, which include cell metabolism and transcriptional reprogramming, and the recycling of cellular components to maintain fundamental cell functions. There is however no description of the contribution of epigenetic regulations to the adaptation of plant cells to limited carbon availability. We investigated this question using nonphotosynthetic grapevine cells (, cv Cabernet Sauvignon) cultured with contrasted glucose concentrations.

View Article and Find Full Text PDF

Plant peptides, synthesized from larger precursor proteins, often undergo proteolytic cleavage and post-translational modifications to form active peptide hormones. This process involves several proteolytic enzymes (proteases). Among these, SBTs (serine proteases) are a major class of proteolytic enzymes in plants and play key roles in various regulatory mechanisms, including plant immune response, fruit development and ripening, modulating root growth, seed development and germination, and organ abscission.

View Article and Find Full Text PDF

The plant shikimate pathway directs a significant portion of photosynthetically assimilated carbon into the downstream biosynthetic pathways of aromatic amino acids (AAA) and aromatic natural products. 3-Deoxy-d--heptulosonate 7-phosphate (DAHP) synthase (hereafter DHS) catalyzes the first step of the shikimate pathway, playing a critical role in controlling the carbon flux from central carbon metabolism into the AAA biosynthesis. Previous biochemical studies suggested the presence of manganese- and cobalt-dependent DHS enzymes (DHS-Mn and DHS-Co, respectively) in various plant species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!