Background: A significant component of the variation in cognitive disability that is observed in Duchenne muscular dystrophy (DMD) is known to be under genetic regulation. In this study we report correlations between standardised measures of intelligence and mutational class, mutation size, mutation location and the involvement of dystrophin isoforms.
Methods And Results: Sixty two male subjects were recruited as part of a study of the cognitive spectrum in boys with DMD conducted at the Sydney Children's Hospital (SCH). All 62 children received neuropsychological testing from a single clinical psychologist and had a defined dystrophin gene (DMD) mutation; including DMD gene deletions, duplications and DNA point mutations. Full Scale Intelligence Quotients (FSIQ) in unrelated subjects with the same mutation were found to be highly correlated (r = 0.83, p = 0.0008), in contrast to results in previous publications. In 58 cases (94%) it was possible to definitively assign a mutation as affecting one or more dystrophin isoforms. A strong association between the risk of cognitive disability and the involvement of groups of DMD isoforms was found. In particular, improvements in the correlation of FSIQ with mutation location were identified when a new classification system for mutations affecting the Dp140 isoform was implemented.
Significance: These data represent one of the largest studies of FSIQ and mutational data in DMD patients and is among the first to report on a DMD cohort which has had both comprehensive mutational analysis and FSIQ testing through a single referral centre. The correlation between FSIQ results with the location of the dystrophin gene mutation suggests that the risk of cognitive deficit is a result of the cumulative loss of central nervous system (CNS) expressed dystrophin isoforms, and that correct classification of isoform involvement results in improved estimates of risk.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2808359 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0008803 | PLOS |
Cleft Palate Craniofac J
January 2025
State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
Objective: Apart from rupture and displacement of muscle fibers, structural defects exist in cleft muscles but have not been adequately investigated. This study aimed to examine the histological and molecular features of the cleft muscles.
Design: Orbicularis oris (OO) and tensor fasciae latae (TFL) muscle samples were obtained from patients with cleft lip and alveolar.
Hum Gene Ther
January 2025
BridgeBio Gene Therapy, Palo Alto, California, USA.
Complement-mediated thrombotic microangiopathy (TMA) in the form of atypical hemolytic uremic syndrome (aHUS) has emerged as an immune complication of systemic adeno-associated virus (AAV) gene transfer that was unforeseen based on nonclinical studies. Understanding this phenomenon in the clinical setting has been limited by incomplete data and a lack of uniform diagnostic and reporting criteria. While apparently rare based on available information, AAV-associated TMA/aHUS can pose a substantial risk to patients including one published fatality.
View Article and Find Full Text PDFFASEB J
January 2025
Shirley Ryan AbilityLab, Chicago, Illinois, USA.
Following injury, skeletal muscle undergoes repair via satellite cell (SC)-mediated myogenic progression. In SCs, the circadian molecular clock gene, Bmal1, is necessary for appropriate myogenic progression and repair with evidence that muscle molecular clocks can also affect force production. Utilizing a mouse model allowing for inducible depletion of Bmal1 within SCs, we determined contractile function, SC myogenic progression and muscle damage and repair following eccentric contractile-induced injury.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683‑8503, Japan.
Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder caused by mutations of the dystrophin gene, which spans 2.4 Mb on the X chromosome. Creatine kinase (CK) activity in blood and titin fragment levels in urine have been identified as biomarkers in DMD to monitor disease progression and evaluate therapeutic intervention.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia.
Duchenne muscular dystrophy (DMD) is a severe X-linked genetic disorder caused by an array of mutations in the dystrophin gene, with the most commonly mutated regions being exons 48-55. One of the several existing approaches to treat DMD is gene therapy, based on alternative splicing and mutant exon skipping. Testing of such therapy requires animal models that carry mutations homologous to those found in human patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!