P-glycoprotein (P-gp, a drug transporter found in the plasma membrane)-mediated multidrug resistance of leukemia cells represents a real obstacle in the effective chemotherapeutic treatment of leukemia. While cisplatin (CisPt) is known to be a substance that is untransportable by P-gp, P-gp positive cells were often found to be resistant to CisPt. The aim of the current paper is to study this phenomenon using P-gp positive mouse leukemia cells L1210/VCR in which the overexpression of P-gp was induced by its ability to adapt to growth on vincristine (VCR). L1210/VCR cells are also resistant to CisPt. However, resistance to this substance could not be reversed by addition of the known P-gp inhibitor verapamil. CisPt induced more pronounced entry into apoptosis, as measured using the annexin V/propidium iodide kit, in sensitive L1210 cells than in resistant L1210/VCR cells. In addition, CisPt induced an increase in the proportion of L1210 cells that were in the g2 phase of the cell cycle when compared to L1210/VCR cells, as measured by staining with propidium iodide. Similarly, a higher release of cytochrome c from the mitochondria to the cytosol was induced by CisPt treatment in L1210 than in L1210/VCR cells. While similar levels of Bax and Bcl-2 proteins were observed in sensitive and resistant cells, CisPt induced a more pronounced decrease of the Bcl-2 levels in L1210 cells than in L1210/VCR cells. Consistent with this observation, CisPt induced a larger decrease of the Bcl-2 content in the Bcl-2:Bax heterooligomer in L1210 cells than in L1210/VCR cells. Moreover, CisPt induced a similar apoptotic DNA fragmentation pattern in both resistant and sensitive cells. All of the above observations indicated that L1210/VCR cells are also resistant to CisPt and that this resistance is related to the differences in the regulatory mechanisms responsible for CisPt-induced apoptosis in L1210/VCR cells without any contribution from the drug efflux activity of P-gp.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4149/pb_2009_04_391 | DOI Listing |
Neoplasma
November 2021
Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia.
Efforts to overcome multidrug resistance in cancer have led to the development of several novel strategies including photodynamic therapy (PDT). PDT is based on the use of photosensitizers (PSs) photoactivation, which causes the formation of reactive oxygen species that can induce cell death. In the last decade, the development of new PSs has been significantly accelerated.
View Article and Find Full Text PDFInt J Mol Sci
February 2015
Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 840 05, Slovakia.
The drug efflux activity of P-glycoprotein (P-gp, a product of the mdr1 gene, ABCB1 member of ABC transporter family) represents a mechanism by which tumor cells escape death induced by chemotherapeutics. In this study, we investigated the mechanisms involved in the effects of pentoxifylline (PTX) on P-gp-mediated multidrug resistance (MDR) in mouse leukemia L1210/VCR cells. Parental sensitive mouse leukemia cells L1210, and multidrug-resistant cells, L1210/VCR, which are characterized by the overexpression of P-gp, were used as experimental models.
View Article and Find Full Text PDFGen Physiol Biophys
September 2010
Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vlárska 5, 833 34 Bratislava.
There is generally well known that various xanthines occur frequently in natural products, e.g. black coffee, black tea, green tea, natural dyes etc.
View Article and Find Full Text PDFGen Physiol Biophys
December 2009
Institute of Molecular Physiology and Genetics, Centre of Excellence of the Slovak Research and Development Agency BIOMEMBRANES 2008, Vlárska 5, 833 34 Bratislava, Slovakia.
P-glycoprotein (P-gp, a drug transporter found in the plasma membrane)-mediated multidrug resistance of leukemia cells represents a real obstacle in the effective chemotherapeutic treatment of leukemia. While cisplatin (CisPt) is known to be a substance that is untransportable by P-gp, P-gp positive cells were often found to be resistant to CisPt. The aim of the current paper is to study this phenomenon using P-gp positive mouse leukemia cells L1210/VCR in which the overexpression of P-gp was induced by its ability to adapt to growth on vincristine (VCR).
View Article and Find Full Text PDFJ Proteome Res
February 2009
Institute of Molecular Physiology and Genetics, Centre of Excellence of the Slovak Research and Development Agency, BIOMEMBRANES2008, Slovak Academy of Sciences, Bratislava, Slovakia.
Multidrug resistance of murine leukemic cell line L1210/VCR (R), obtained by adaptation of parental L1210 cells (S) on vincristine, is associated with overexpression of P glycoprotein (P-gp, the ATP-dependent drug efflux pump). Previously, we found that cytochemical staining of negatively charged cell surface binding sites (probably sialic acid) by ruthenium red (RR) revealed a compact layer of RR bound to the external coat of S cells. This is in contrast to R cells and L1210/VCR cells cultured in the presence of vincristine during the last cultivation prior to the experiment (V cells), where the RR layer was either reduced or absent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!