Standardization of radium-223 by liquid scintillation counting.

Appl Radiat Isot

Ionizing Radiation Division, Physics Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899-8462, USA.

Published: August 2010

Liquid scintillation (LS) counting was undertaken as part of the primary standardization of (223)Ra. Radium-223 decays with a half life of 11.43 d through a chain of shorter-lived daughter radionuclides, resulting in five alpha decays and three beta decays. The CIEMAT/NIST method of tritium efficiency tracing was employed, with the beta efficiencies being calculated using the program CN2004, developed by the Physikalisch-Technische Bundesanstalt (PTB). The total calculated LS efficiency, considering all daughter radionuclides, was approximately 598%. Separate experiments were performed to rule out loss of the 3.96 s (219)Ra daughter from the cocktail and possible counting loss of the 1.78 ms (215)Po daughter due to LS counter dead-time. No loss was observed in either experiment. In the final experiment an expanded uncertainty (k=2) of 0.55% was achieved. Results were in excellent agreement with confirmatory measurements performed by 2pialpha proportional counting. However, results are not in agreement with methods based on gamma ray measurements.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apradiso.2009.11.068DOI Listing

Publication Analysis

Top Keywords

liquid scintillation
8
scintillation counting
8
daughter radionuclides
8
standardization radium-223
4
radium-223 liquid
4
counting
4
counting liquid
4
counting undertaken
4
undertaken primary
4
primary standardization
4

Similar Publications

Emerging 0D Hybrid Metal Halide Luminescent Glasses.

Adv Mater

January 2025

State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510641, China.

Article Synopsis
  • 0D hybrid metal halide (HMH) luminescent glasses are gaining popularity due to their unique chemical properties and connection to crystalline forms, but their glass-forming abilities and luminescent characteristics are not fully understood.
  • The review discusses the formation of these glasses through melt-quenching, examines the current compounds that can create stable glassy phases, and explores their structural features, such as transparency and luminescence.
  • Additionally, potential applications in areas like X-ray detection, anti-counterfeiting, and information encryption are highlighted, along with insights into future developments for 0D HMH glasses.
View Article and Find Full Text PDF

Removal of liquid scintillator exudates by the metal organic frameworks materials: The role of functional groups.

PLoS One

December 2024

Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China.

The leakage of Liquid scintillator exudates has brought potential harm to the environment. Attributed to the large specific surface area and high modifiability, high-performance adsorbents based on metal-organic frameworks (MOFs) can effectively remove organic pollutants. In this work, we use different functional groups to prepare the material of UIO-66(Zr).

View Article and Find Full Text PDF

Tritium, a radioactive isotope produced naturally through cosmic radiation interactions and anthropogenically through nuclear weapons testing, poses potential environmental risks, particularly within the water cycle. This study measured tritium concentrations in surface water across Thailand to establish a baseline dataset for monitoring potential contamination from nuclear activities and accidents. Surface water samples were collected from 14 large reservoirs during the wet season in October 2023 and the dry season in February 2024, providing a total of 28 samples.

View Article and Find Full Text PDF

Liquid scintillator consists of an organic solvent and one or more scintillation solutes, which can emit light pulses after absorbing X- and γ-rays, or high-energy particles. It has the characteristics of strong neutron/γ-ray (n/γ) discrimination, short decay time, unlimited size and low cost, which plays an important role in high-sensitivity and large-scale radiation detection, especially in the construction and safe operation of nuclear facilities. However, the impact of solvent selection and moisture content on the fluorescence-scintillation properties of scintillators has not been adequately investigated in the literature.

View Article and Find Full Text PDF

Introduction: CA102N is a novel anticancer drug developed by covalently linking H-Nim (N-(4-Amino-2-phenoxyphenyl methanesulfonamide) to Hyaluronic Acid to target CD44 receptor-rich tumors. The proposed approach seeks to enhance the efficacy and overcome limitations associated with H-Nim, including poor solubility and short half-life.

Methods: The study aimed to evaluate the pharmacokinetics, biodistribution, metabolism, and tumor permeability of [14C] CA102N in xenograft mice following a single intravenous dose of 200 mg/kg.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!