Dominant mutations in the visual pigment Rhodopsin (Rh) cause retinitis pigmentosa (RP) characterized by progressive blindness and retinal degeneration. The most common Rh mutation, Rh(P23H) forms aggregates in the endoplasmic reticulum (ER) and impairs the proteasome; however, the mechanisms linking Rh aggregate formation to proteasome dysfunction and photoreceptor cell loss remain unclear. Using mammalian cell cultures, we provide the first evidence that misfolded Rh(P23H) is a substrate of the ERAD effector VCP, an ATP-dependent chaperone that extracts misfolded proteins from the ER and escorts them for proteasomal degradation. VCP co-localizes with misfolded Rh(P23H) in retinal cells and requires functional N-terminal and D1 ATPase domains to form a complex with Rh(P23H) aggregates. Furthermore, VCP uses its D2 ATPase activity to promote Rh(P23H) aggregate retrotranslocation and proteasomal delivery. Our results raise the possibility that modulation of VCP and ERAD activity might have potential therapeutic significance for RP.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamcr.2010.01.008DOI Listing

Publication Analysis

Top Keywords

erad effector
8
effector vcp
8
misfolded rhp23h
8
vcp
5
rhp23h
5
clearance rhodopsinp23h
4
rhodopsinp23h aggregates
4
aggregates requires
4
requires erad
4
vcp dominant
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!