This paper reviews our previously published data and presents new results on biosensor assay of blood esterases. Tyrosinase and choline oxidase biosensors based on nanostructured polyelectrolyte films were developed for these purposes. Experiments were performed on the quantitative determination of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), carboxylesterase (CaE), and neuropathy target esterase (NTE) in samples of whole blood of rats, mice, and humans. Good agreement was found between biosensor and spectrophotometric assays for AChE, BChE, and CaE. No direct comparison could be made for NTE because its activity cannot be measured spectrophotometrically in whole blood. A new method of simultaneous quantitative determination of AChE and BChE in test mixtures is also described. This method represents a bifunctional biosensor for the simultaneous analysis of choline and phenol based on integration of individual sensors. Algorithms for calculation of separate concentrations of AChE and BChE in the mixture were developed. The mean error of calculated component concentrations was approximately 6% for binary test mixtures. The present work provides a foundation for building multiplexed systems for the simultaneous determination of multiple esterases with applications to biomonitoring for exposures to organophosphorus compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2010.01.028DOI Listing

Publication Analysis

Top Keywords

ache bche
12
blood esterases
8
organophosphorus compounds
8
simultaneous determination
8
quantitative determination
8
test mixtures
8
biosensor
4
biosensor analysis
4
blood
4
analysis blood
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!