Objective: To assess the modulation of acute provoked pain by repetitive transcranial magnetic stimulation (rTMS) of the motor cortex in patients with chronic neuropathic pain.
Methods: In 32 patients with chronic neuropathic pain affecting one upper limb, laser-evoked potentials (LEPs) (N2 and P2 components) were recorded in response to laser stimulation of the painful or painless hand, before and after active or sham rTMS applied at 10Hz over the motor cortex corresponding to the painful hand. Laser-induced pain was scored on a visual analogue scale.
Results: Both active and sham rTMS reduced N2-P2 amplitude of the LEPs in response to painful or painless hand stimulation, likely due to the decline of attention during the sessions. However, active rTMS, but not sham rTMS, specifically reduced N2 amplitude and N2/P2 amplitude ratio of the painful hand LEPs. Painful hand LEP attenuation correlated with the magnitude of pain relief produced by active rTMS.
Conclusion: Motor cortex rTMS delivered at high frequency (10Hz) was able to reduce LEP amplitude in parallel with laser-induced pain scores in patients with chronic neuropathic pain. The preferential change in the N2 component suggested a modulation of the sensori-discriminative aspect of laser-induced pain.
Significance: Previous studies have shown that rTMS delivered to various cortical targets by different protocols could modulate experimental pain, primarily in healthy subjects. The present results demonstrate the ability of motor cortex rTMS to interfere with the processing of acute provoked pain, even if there is an underlying chronic neuropathic pain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.clinph.2009.12.028 | DOI Listing |
NPJ Sci Learn
December 2024
Academy of Medical Engineering and Translational Medicine (AMT), Tianjin University, Tianjin, China.
Generalization is central to motor learning. However, few studies are on the learning generalization of BCI-actuated supernumerary robotic finger (BCI-SRF) for human-machine interaction training, and no studies have explored its longitudinal neuroplasticity mechanisms. Here, 20 healthy right-handed participants were recruited and randomly assigned to BCI-SRF group or inborn finger group (Finger) for 4-week training and measured by novel SRF-finger opposition sequences and multimodal MRI.
View Article and Find Full Text PDFSci Rep
December 2024
Institute of Medical Sciences, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
Astrocyte to neuron reprogramming has been performed using viral delivery of neurogenic transcription factors in GFAP expressing cells. Recent reports of off-target expression in cortical neurons following adeno-associated virus (AAV) transduction to deliver the neurogenic factors have confounded our understanding of the efficacy of direct cellular reprogramming. To shed light on potential mechanisms that may underlie the neuronal off-target expression of GFAP promoter driven expression of neurogenic factors in neurons, two regionally distinct cortices were compared-the motor cortex (MC) and medial prefrontal cortex (mPFC)-and investigated: (1) the regional tropism and astrocyte transduction with an AAV5-GFAP vector, (2) the expression of Gfap in MC and mPFC neurons; and (3) material transfer between astrocytes and neurons.
View Article and Find Full Text PDFNat Commun
December 2024
Weldon School of Biomedical Engineering, West Lafayette, Indiana, IN, USA.
Circuit-based biomarkers distinguishing the gradual progression of Lewy pathology across synucleinopathies remain unknown. Here, we show that seeding of α-synuclein preformed fibrils in mouse dorsal striatum and motor cortex leads to distinct prodromal-phase cortical dysfunction across months. Our findings reveal that while both seeding sites had increased cortical pathology and hyperexcitability, distinct differences in electrophysiological and cellular ensemble patterns were crucial in distinguishing pathology spread between the two seeding sites.
View Article and Find Full Text PDFNat Commun
December 2024
Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA.
Impaired muscle mitochondrial oxidative capacity is associated with future cognitive impairment, and higher levels of PET and blood biomarkers of Alzheimer's disease and neurodegeneration. Here, we examine its associations with up to over a decade-long changes in brain atrophy and microstructure. Higher in vivo skeletal muscle oxidative capacity via MR spectroscopy (post-exercise recovery rate, k) is associated with less ventricular enlargement and brain aging progression, and less atrophy in specific regions, notably primary sensorimotor cortex, temporal white and gray matter, thalamus, occipital areas, cingulate cortex, and cerebellum white matter.
View Article and Find Full Text PDFHum Brain Mapp
January 2025
Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo, Finland.
State-of-the-art navigated transcranial magnetic stimulation (nTMS) systems can display the TMS coil position relative to the structural magnetic resonance image (MRI) of the subject's brain and calculate the induced electric field. However, the local effect of TMS propagates via the white-matter network to different areas of the brain, and currently there is no commercial or research neuronavigation system that can highlight in real time the brain's structural connections during TMS. This lack of real-time visualization may overlook critical inter-individual differences in brain connectivity and does not provide the opportunity to target brain networks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!