Background: The pathology of schizophrenia is thought to involve multiple gray and white matter regions. A number of studies have revealed impaired social cognition in schizophrenia. Some evidence suggests an association of this social cognition deficit with gray matter reductions in 'social brain' areas. However, no study has yet revealed the association between social cognition abilities and white matter abnormalities in schizophrenia patients.

Methods: Twenty-six schizophrenia patients and 27 healthy controls underwent the Perception of Affect Task (PAT), which consisted of four subtasks measuring different aspects of emotion attribution. Voxelwise group comparison of white matter fractional anisotropy (FA) was performed using tract-based spatial statistics (TBSS). The relation between impaired social cognition ability and FA reduction was examined in patients for each subtask, using simple regression analysis within brain areas that showed a significant FA reduction in patients compared with controls. The same correlational analysis was also performed for healthy controls in the whole brain.

Results: Schizophrenia patients showed reduced emotion attribution ability compared with controls in all four subtasks. The facial emotion perception subtask showed a significant correlation with FA reductions in the left occipital white matter region and left posterior callosal region. The correlational analyses in healthy controls revealed no significant correlation of FA with any of the PAT subtasks.

Conclusions: Our voxelwise correlational analysis of white matter provided a potential neural basis for the social cognition impairments in schizophrenia, in support of the disconnection hypothesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.schres.2009.12.038DOI Listing

Publication Analysis

Top Keywords

white matter
24
social cognition
24
healthy controls
12
impaired social
8
association social
8
schizophrenia patients
8
emotion attribution
8
compared controls
8
correlational analysis
8
matter
7

Similar Publications

Neuropathological contributions to grey matter atrophy and white matter hyperintensities in amnestic dementia.

Alzheimers Res Ther

January 2025

Laboratory for Clinical Neuroscience, Center for Biomedical Technology, Universidad Politécnica de Madrid, IdISSC, Crta M40, km38, Madrid, 28223, Spain.

Background: Dementia patients commonly present multiple neuropathologies, worsening cognitive function, yet structural neuroimaging signatures of dementia have not been positioned in the context of combined pathology. In this study, we implemented an MRI voxel-based approach to explore combined and independent effects of dementia pathologies on grey and white matter structural changes.

Methods: In 91 amnestic dementia patients with post-mortem brain donation, grey matter density and white matter hyperintensity (WMH) burdens were obtained from pre-mortem MRI and analyzed in relation to Alzheimer's, vascular, Lewy body, TDP-43, and hippocampal sclerosis (HS) pathologies.

View Article and Find Full Text PDF

The prognosis of adult T-cell leukemia/lymphoma (ATL) with primary central nervous system (CNS) involvement has been unclear since the advent of new therapies. Recently, we have shown that flow cytometric CD7/CADM1 analysis of CD4 + cells (HAS-Flow) is useful to detect ATL cells that are not morphologically diagnosed as ATL cells. We investigated the role of CNS involvement in ATL using cytology and HAS-Flow by analyzing cerebrospinal fluid (CSF) from 73 aggressive ATL cases.

View Article and Find Full Text PDF

Astrocytes in aging.

Neuron

January 2025

Salk Institute for Biological Studies, Molecular Neurobiology Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA. Electronic address:

The mammalian nervous system is impacted by aging. Aging alters brain architecture, is associated with molecular damage, and can manifest with cognitive and motor deficits that diminish the quality of life. Astrocytes are glial cells of the CNS that regulate the development, function, and repair of neural circuits during development and adulthood; however, their functions in aging are less understood.

View Article and Find Full Text PDF

Automated segmentation of deep brain structures from Inversion-Recovery MRI.

Comput Med Imaging Graph

January 2025

Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France; Université Clermont Auvergne, CNRS, CHU Clermont-Ferrand, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France.

Methods for the automated segmentation of brain structures are a major subject of medical research. The small structures of the deep brain have received scant attention, notably for lack of manual delineations by medical experts. In this study, we assessed an automated segmentation of a novel clinical dataset containing White Matter Attenuated Inversion-Recovery (WAIR) MRI images and five manually segmented structures (substantia nigra (SN), subthalamic nucleus (STN), red nucleus (RN), mammillary body (MB) and mammillothalamic fascicle (MT-fa)) in 53 patients with severe Parkinson's disease.

View Article and Find Full Text PDF

Evaluation of objective methods for analyzing ipsilateral motor evoked potentials in stroke survivors with chronic upper extremity motor impairment.

J Neural Eng

January 2025

Department of Physical Medicine and Rehabilitation, MetroHealth Medical Center, 4229 Pearl Road, Suite N4-13, Cleveland, Ohio, 44109-1998, UNITED STATES.

Ipsilateral motor evoked potentials (iMEPs) are believed to represent cortically evoked excitability of uncrossed brainstem-mediated pathways. In the event of extensive injury to (crossed) corticospinal pathways, which can occur following a stroke, uncrossed ipsilateral pathways may serve as an alternate resource to support the recovery of the paretic limb. However, iMEPs, even in neurally intact people, can be small, infrequent, and noisy, so discerning them in stroke survivors is very challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!