A site-specific method for measuring solute segregation at grain boundaries in an Aluminum alloy is presented. A Sigma 7(Sigma 7=38 degrees 111) grain boundary (GB) in an aluminum alloy (Zr, Cu as main alloying elements) was evaluated using site-specific Local Electrode Atom Probe (LEAP). A sample containing a Sigma 7GB was prepared by combining electron backscatter diffraction (EBSD) and focused ion beam (FIB) milling to locate the GB of interest and extract a specimen. Its composition was determined by LEAP, and compared to a general high angle GB (HAGB). Zr was the only alloying element present in the Sigma 7GB, whereas the general HAGB contained both Cu and Zr. This site-specific LEAP method was found to be an accurate method for measuring GB segregation at specific GB misorientations. The method has advantages over other methods of measuring chemistry at GBs, such as spectroscopy, in that GB structure can be assessed in three dimensions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultramic.2009.11.006DOI Listing

Publication Analysis

Top Keywords

solute segregation
8
grain boundary
8
method measuring
8
aluminum alloy
8
sigma 7gb
8
site-specific
4
site-specific atomic
4
atomic scale
4
scale analysis
4
analysis solute
4

Similar Publications

Experimental Evolution and Hybridization Enhance the Fermentative Capacity of Wild Saccharomyces eubayanus Strains.

FEMS Yeast Res

January 2025

Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile.

Lager beer is traditionally fermented using Saccharomyces pastorianus. However, the limited availability of lager yeast strains restricts the potential range of beer profiles. Recently, Saccharomyces eubayanus strains showed the potential to impart novel aromas to beer, with slower fermentation rates than commercial strains.

View Article and Find Full Text PDF

Amyloid fibril formation of α-synuclein (αSN) is a hallmark of synucleinopathies. Although the previous studies have provided numerous insights into the molecular basis of αSN amyloid formation, it remains unclear how αSN self-assembles into amyloid fibrils in vivo. Here, we show that αSN amyloid formation is accelerated in the presence of two macromolecular crowders, polyethylene glycol (PEG) (MW: ~10,000) and dextran (DEX) (MW: ~500,000), with a maximum at approximately 7% (w/v) PEG and 7% (w/v) DEX.

View Article and Find Full Text PDF

Metallic interfaces are locations where hydrogen (H) is expected to segregate and lead to the formation and stabilization of defects. This work focuses on the tungsten/copper (W/Cu) interface built according to theWbcc(001)/Cuhcp(112¯0)orientation. H behavior is subsequently determined at the interface and in its vicinity with electronic structure calculations based on the density functional theory.

View Article and Find Full Text PDF

The redox aspects of lithium-ion batteries.

Energy Environ Sci

December 2024

Institute of Chemical Science and Engineering, Station 6, Ecole Polytechnique Federale de Lausanne CH-1015 Lausanne Switzerland

This article aims to present the redox aspects of lithium-ion batteries both from a thermodynamic and from a conductivity viewpoint. We first recall the basic definitions of the electrochemical potential of the electron, and of the Fermi level for a redox couple in solutions. The Fermi level of redox solids such as metal oxide particles is then discussed, and a Nernst equation is derived for two ideal systems, namely an ideally homogenous phase where the oxidised and reduced metal ions are homogeneously distributed and two segregated phases where the oxidised and the reduced metal ions are separated in two distinct phases such as observed, for example, in biphasic lithium iron phosphate.

View Article and Find Full Text PDF

This study aimed to investigate the release of metallic ions from cobalt-chromium (Co-Cr) alloys fabricated by additive manufacturing (AM) for comparison with dental casting. Co-Cr alloys were fabricated via AM using selective laser melting (SLM) and electron beam melting (EBM) in powder-bed fusion. Polished and mechanically ground specimens were prepared.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!