The use of rats differing in the intake of sweet substances has highlighted some interesting parallels between taste preferences and drug self-administration. For example, rats selectively bred to consume high (HiS) or low (LoS) amounts of a 0.1% saccharin solution (when compared to water consumption), show corresponding differences across several measures of cocaine self-administration (HiS>LoS). In this study, we measured whether the two strains also differ when response requirements are imposed for obtaining a sucrose reinforcer. Male HiS and LoS rats were measured for operant responding for sucrose pellets under fixed-ratio (FR) schedules of 1, 3, 5 and 10 and under a progressive-ratio (PR) schedule, during which the response requirement for each successive pellet increased exponentially. The effect of systemic naltrexone (0.3, 1 and 3mg/kg) on PR responding for sucrose pellets was also tested. Under all FR and PR schedules, the number of pellets obtained by the LoS rats were significantly lower than those obtained by the HiS rats. Although the LoS weighed more than the HiS rats, this difference does not appear to explain differences in operant behavior. No strain differences in the effect of naltrexone were observed; the 3mg/kg dose reduced the number of pellets obtained in both strains. Measures of locomotor activity taken prior to operant trials suggest that the differences in responding were not due to differences in general activity levels. These studies provide further characterization of the HiS and LoS rat lines by demonstrating that motivation to consume sucrose is greater in HiS than in LoS rats.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2847856 | PMC |
http://dx.doi.org/10.1016/j.physbeh.2010.01.010 | DOI Listing |
Physiol Behav
January 2025
Department of Psychology, Program in Behavioral Neuroscience, Western Washington University, Bellingham, WA 98225-9172, USA.
Front Plant Sci
December 2024
Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
Drought conditions severely curtail the ability of plants to accumulate biomass due to the closure of stomata and the decrease of photosynthetic assimilation rate. Additionally, there is a shift in the plant's metabolic processes toward the production of metabolites that offer protection and aid in osmoadaptation, as opposed to those required for development and growth. To limit water loss via non-stomatal transpiration, plants adjust the load and composition of cuticle waxes, which act as an additional barrier.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China. Electronic address:
Soil salinization is one of the main problems leading to a reduction in arable land area. In the present study, strongly salt-tolerant lines were screened for germination rates and physiological indices. The mechanism of saline-alkali stress tolerance in winter rapeseed was examined using transcriptome and metabolome analyses.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Department of Life Science (BK21 Program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, 06974, Seoul, Republic of Korea. Electronic address:
Sucrose nonfermenting-1-related protein kinase 2 (SnRK2) intricately modulates plant responses to abiotic stresses and abscisic acid (ABA) signaling. In pepper genome, five SnRK2 genes with sequence homology to CaSnRK2.6 showed distinct expression patterns across various pepper organs and in response to treatments with ABA, drought, mannitol, and salt.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Psychiatry, Division of Molecular Therapeutics, New York State Psychiatric Institute, Columbia University, New York, NY 10032, USA.
Background/objectives: Learning is classically modeled to consist of an acquisition period followed by a mastery period when the skill no longer requires conscious control and becomes automatic. Dopamine neurons projecting to the ventral striatum (VS) produce a teaching signal that shifts from responding to rewarding or aversive events to anticipating cues, thus facilitating learning. However, the role of the dopamine-receptive neurons in the ventral striatum, particularly in encoding decision-making processes, remains less understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!