NMDA receptors are found in neurons both at synapses and in extrasynaptic locations. Extrasynaptic locations are poorly characterized. Here we used preembedding immunoperoxidase and postembedding immunogold electron microscopy and fluorescence light microscopy to characterize extrasynaptic NMDA receptor locations in dissociated hippocampal neurons in vitro and in the adult and postnatal hippocampus in vivo. We found that extrasynaptic NMDA receptors on neurons in vivo and in vitro were usually concentrated at points of contact with adjacent processes, which were mainly axons, axon terminals, or glia. Many of these contacts were shown to contain adhesion factors such as cadherin and catenin. We also found associations of extrasynaptic NMDA receptors with the membrane associated guanylate kinase (MAGUKs), postsynaptic density (PSD)-95 and SAP102. Developmental differences were also observed. At postnatal day 2 in vivo, extrasynaptic NMDA receptors could often be found at sites with distinct densities whereas dense material was seen only rarely at sites of extrasynaptic NMDA receptors in the adult hippocampus in vivo. This difference probably indicates that many sites of extrasynaptic NMDA receptors in early postnatal ages represent synapse formation or possibly sites for synapse elimination. At all ages, as suggested in both in vivo and in vitro studies, extrasynaptic NMDA receptors on dendrites or the sides of spines may form complexes with other proteins, in many cases, at stable associations with adjacent cell processes. These associations may facilitate unique functions for extrasynaptic NMDA receptors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2840201 | PMC |
http://dx.doi.org/10.1016/j.neuroscience.2010.01.022 | DOI Listing |
Alzheimers Dement
December 2024
Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Background: Arc is a synaptic immediate early gene that mediates two distinct pathways at excitatory synapses. Canonically, Arc accelerates endocytosis of AMPA receptors by direct binding to TARPgs and endocytic machinery and thereby contributes to mGluR-LTD. Arc also acts at recently potentiated synapses, where it is phosphorylated by CaMKII and binds NMDAR subunits NR2A and NR2B and recruits the PI3K adaptor p55PIK to assemble a signaling complex that activates AKT and inhibits GSK3β.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom.
Background: Neurotransmitter receptors' contribution to Alzheimer's disease (AD) pathology development has been implicated by basic science studies but is yet to be fully established. Here, we incorporate receptor density maps into network spreading models to predict amyloid and tau patterns in AD, reflecting their potential roles in facilitating or impeding pathology production and connectivity-mediated spread.
Method: Amyloid-PET positive individuals from the Alzheimer's Disease Neuroimaging Initiative (ADNI) were divided into "early" (n = 119) and "late" (n = 69) pathology groups according to tau accumulation in the temporal cortex (Figure 1A).
Alzheimers Dement
December 2024
Faculty of Medicine, Arish University, Arish, North Sinai, Egypt.
Background: Lingual taste cells (LTCs) are taste buds' sensory cells that modulate gustation. This study's aim is to assess whether it can be successfully implanted in hippocampus, modulating learning and memory deficits observed in Alzheimer's Dementia (AD).
Methods: Retrospective trials on rodents i.
Alzheimers Dement
December 2024
USC Leonard Davis School of Gerontology, Los Angeles, CA, USA.
Background: Chronic air pollution exposure increases accelerates cognitive aging and AD risk. Synapse loss in AD correlates with decreased cognitive ability. In rodents, inhaled air pollutants decreased glutamatergic synapses, decreasing excitatory postsynaptic currents (EPSCs), while increasing total levels of AMPA and NMDA receptor protein.
View Article and Find Full Text PDFBackground: Patients with Alzheimer's disease (AD) often experience burdensome neuropsychiatric symptoms, including agitation which occurs in both home and long-term care (LTC) facilities, and is associated with substantial increases in caregiver burden and LTC placements. AXS-05 (45-mg dextromethorphan/105-mg bupropion), a novel, oral NMDA receptor antagonist and sigma-1 receptor agonist, approved by the FDA for major depressive disorder, is being investigated for treatment of AD agitation (ADA). AXS-05 has been evaluated in 2 randomized, double-blind studies: Phase 2 ADVANCE-1 (NCT03226522); Phase 3 ACCORD (NCT04797715).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!