Charge carrier concentration and mobility in alkali silicates.

J Chem Phys

Laboratoire d'Electrochimie et de Physicochimie des Matériaux et des Interfaces, ENSEEG, BP 75, Saint Martin D'Hères Cedex 38402, France.

Published: January 2010

The respective contributions of the charge carrier concentration and mobility to the ionic conductivity in glasses remain an open question. In the present work we calculate these two parameters from conductivity data as a function of temperature below and above the glass transition temperature, T(g). The basic hypothesis assumes that ionic displacement results from the migration of cationic pairs formed by a partial dissociation, which is a temperature-activated process. Below T(g) their migration would follow a temperature-activated mechanism, while a free volume mechanism prevails above this temperature, leading to a deviation from the Arrhenius behavior. Expressions are formulated for the variation in ionic conductivity as a function of temperature in the supercooled and glassy states. Fitting the experimental data with the proposed expressions allows for the determination of characteristic parameters such as the charge carrier formation and migration enthalpies. Based on these values, it is then possible to calculate the charge carrier concentration and mobility in the entire temperature range. At room temperature, the mobility of effective charge carriers is estimated close to 10(-4) cm(2) s(-1) V(-1) for alkali disilicates glasses under study, while the ratio between the number of effective charge carriers and the total number of alkali cations is estimated to be from 10(-8) to 10(-10), comparable to the concentration of intrinsic defects in an ionic crystal or dissociated species from a weak electrolyte solution.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3271154DOI Listing

Publication Analysis

Top Keywords

charge carrier
16
carrier concentration
12
concentration mobility
12
ionic conductivity
8
function temperature
8
effective charge
8
charge carriers
8
charge
6
temperature
6
concentration
4

Similar Publications

Construction of Mn-Defective S/MnCdS for Promoting Photocatalytic N Reduction.

Inorg Chem

January 2025

Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.

Improving catalytic performance by controlling the microstructure of materials has become a hot topic in the field of photocatalysis, such as the surface defect site, multistage layered morphology, and exposed crystal surface. Due to the differences in the metal atomic radius (Mn and Cd) and solubility product constant (MnS and CdS), Mn defect easily occurred in the S/MnCdS (S/0.4MCS) composite.

View Article and Find Full Text PDF

Electrochemical polymerization of 3,4-ethylenedioxythiophene in the presence of water-soluble fullerene derivatives was investigated. The electronic structure, morphology, spectroelectrochemical, electrochemical properties and near-IR photoconductivity of composite films of poly(3,4-ethylenedioxythiophene) with fullerenes were studied for the first time. It was shown that fullerene with hydroxyl groups creates favorable conditions for the formation of PEDOT chains and more effectively compensates for the positive charges on the PEDOT chains.

View Article and Find Full Text PDF

The fabrication of dual-quantum dot heterostructures offers a promising strategy to enhance the environmental remediation performance of photocatalysts. Herein, a BiWO-based Z-scheme heterojunction was constructed by incorporating carbonized polymer dots (CPDs) and CdS quantum dots (QDs) via a microwave-assisted solvothermal method. The 1 wt% CPDs/CdS QDs/BiWO (CCBW-1) composite achieved optimal Cr(VI) removal, reaching 97.

View Article and Find Full Text PDF

Currently, to deal with the increasingly severe energy crisis and environmental consequences, photocatalytic technology is considered as a promise solution, and the construction of Z-scheme heterostructures are important strategies to maximize the utilization of solar energy and improve photocatalytic performance. Herein, a novel full spectrum-responsive Z-scheme Bi-BiVO-BiTiO heterojunction was constructed by a facile hydrothermal method without any templates or surfactants. A series of detailed analyses revealed that the novel Bi-BiVO-BiTiO heterojunction catalyst were prepared successfully.

View Article and Find Full Text PDF

Photocatalytic selective oxidation of glycerol to formic acid and formaldehyde over surface cobalt-doped titanium dioxide.

J Colloid Interface Sci

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China. Electronic address:

Glycerol is one of the most important biomass platform compounds that is a by-product of biodiesel production, and the selective cleavage of the CC bond of glycerol to produce liquid hydrogen carriers (i.e., formic acid and formaldehyde) offers a viable strategy to alleviate the currently faced energy shortages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!