Density functional theory calculation was performed to study the adsorption and reaction of CH(2)I(2) on Ag(111). Thermodynamically favorable reactions of CH(2)I(2) on Ag(111) are C-I bond ruptures and CH(2) coupling to form ethylene. The energy barriers for the C-I bond ruptures of chemisorbed CH(2)I(2) on Ag(111) are 0.43-0.48 eV, whereas the activation energy for the C-H bond rupture of chemisorbed CH(2) on Ag(111) is 1.76 eV. The coupling reaction barrier of neighboring chemisorbed CH(2) to form C(2)H(4) on Ag(111) was much less than those of the C-I bond ruptures of CH(2)I(2)(a) and the migration of chemisorbed CH(2) on Ag(111). The adsorption behaviors of different surface species on Ag(111) were well explained in terms of the charge density difference.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3292641 | DOI Listing |
J Chem Phys
January 2010
Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
Density functional theory calculation was performed to study the adsorption and reaction of CH(2)I(2) on Ag(111). Thermodynamically favorable reactions of CH(2)I(2) on Ag(111) are C-I bond ruptures and CH(2) coupling to form ethylene. The energy barriers for the C-I bond ruptures of chemisorbed CH(2)I(2) on Ag(111) are 0.
View Article and Find Full Text PDFJ Am Chem Soc
November 2004
Department of Chemistry and Biochemistry, Center for Materials Chemistry, The University of Texas at Austin, Austin, Texas 78712, USA.
Using reflection-absorption infrared spectroscopy (RAIRS) and temperature-programmed reaction spectroscopy (TPRS), we have investigated the cross-coupling reaction between CH(2)(a) and CF(3)(a) on a Ag(111) surface. CH(2)(a) and CF(3)(a) are generated by thermal decomposition of adsorbed CH(2)I(2) and CF(3)I. RAIRS results unambiguously demonstrate that CH(2)(a) inserts into the Ag-CF(3) bond to produce adsorbed CF(3)CH(2)(a), which upon heating selectively undergoes beta-fluorine elimination to form CH(2)=CF(2).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!