At the nanoscale, the surface becomes pivotal for the properties of semiconductors due to an increased surface-to-bulk ratio. Surface functionalization is a means to include semiconductor nanocrystals into devices. In this comprehensive experimental study we determine in detail the effect of a single thiol functional group on the electronic and optical properties of the hydrogen-passivated nanodiamond adamantane. We find that the optical properties of the diamondoid are strongly affected due to a drastic change in the occupied states. Compared to adamantane, the optical gap in adamantane-1-thiol is lowered by approximately 0.6 eV and UV luminescence is quenched. The lowest unoccupied states remain delocalized at the cluster surface leaving the diamondoid's negative electron affinity intact.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3280388 | DOI Listing |
Phys Rev Lett
December 2024
CERN, Geneva, Switzerland.
High-energy nuclear collisions create a quark-gluon plasma, whose initial condition and subsequent expansion vary from event to event, impacting the distribution of the eventwise average transverse momentum [P([p_{T}])]. Disentangling the contributions from fluctuations in the nuclear overlap size (geometrical component) and other sources at a fixed size (intrinsic component) remains a challenge. This problem is addressed by measuring the mean, variance, and skewness of P([p_{T}]) in ^{208}Pb+^{208}Pb and ^{129}Xe+^{129}Xe collisions at sqrt[s_{NN}]=5.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, 1020 Vienna, Austria.
The efficient readout of the relevant information is pivotal for quantum simulation experiments. Often only single observables are accessed by performing standard projective measurements. In this work, we implement an atomic beam splitter by controlled outcoupling that enables a generalized measurement scheme.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States.
Variance in the properties of optical mesoscopic probes is often a limiting factor in applications. In the thermodynamic limit, the smaller the probe, the larger the relative variance. However, specific viral protein cages can assemble efficiently outside the bounds of statistical fluctuations at equilibrium through a process that is characterized by intrinsic quality-control and self-limiting capabilities.
View Article and Find Full Text PDFJ Vis
January 2025
Institut de Neurosciences de la Timone, CNRS & Aix-Marseille Université, Marseille, France.
Sensory-motor systems can extract statistical regularities in dynamic uncertain environments, enabling quicker responses and anticipatory behavior for expected events. Anticipatory smooth pursuit eye movements (aSP) have been observed in primates when the temporal and kinematic properties of a forthcoming visual moving target are fully or partially predictable. To investigate the nature of the internal model of target kinematics underlying aSP, we tested the effect of varying the target kinematics and its predictability.
View Article and Find Full Text PDFNanoscale
January 2025
Sorbonne Université, MONARIS, CNRS-UMR 8233, 4 Place Jussieu, F-75005 Paris, France.
Developing chiral plasmonic nanostructures represents a significant scientific challenge due to their multidisciplinary potential. Observations have revealed that the dichroic behavior of metal plasmons changes when chiral molecules are present in the system, offering promising applications in various fields such as nano-optics, asymmetric catalysis, polarization-sensitive photochemistry and molecular detection. In this study, we explored the synthesis of plasmonic gold nanoparticles and the role of cysteine in their chiroplasmonic properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!