Structural makeup, biopolymer conformation, and biodegradation characteristics of a newly developed super genotype of oats (CDC SO-I versus conventional varieties): a novel approach.

J Agric Food Chem

Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan, Canada S7N 5A8.

Published: February 2010

Recently, a new "super" genotype of oats (CDC SO-I or SO-I) has been developed. The objectives of this study were to determine structural makeup (features) of oat grain in endosperm and pericarp regions and to reveal and identify differences in protein amide I and II and carbohydrate structural makeup (conformation) between SO-I and two conventional oats (CDC Dancer and Derby) grown in western Canada in 2006, using advanced synchrotron radiation based Fourier transform infrared microspectroscopy (SRFTIRM). The SRFTIRM experiments were conducted at National Synchrotron Light Sources, Brookhaven National Laboratory (NSLS, BNL, U.S. Department of Energy). From the results, it was observed that comparison between the new genotype oats and conventional oats showed (1) differences in basic chemical and protein subfraction profiles and energy values with the new SO-I oats containing lower lignin (21 g/kg of DM) and higher soluble crude protein (530 g/kg CP), crude fat (59 g/kg of DM), and energy values (TDN, 820 g/kg of DM; NE(L3x), 7.8 MJ/kg of DM); (2) significant differences in rumen biodegradation kinetics of dry matter, starch, and protein with the new SO-I oats containing lower EDDM (638 g/kg of DM) and higher EDCP (103 g/kg of DM); (3) significant differences in nutrient supply with highest truly absorbed rumen undegraded protein (ARUP, 23 g/kg of DM) and total metabolizable protein supply (MP, 81 g/kg of DM) from the new SO-I oats; and (4) significant differences in structural makeup in terms of protein amide I in the endosperm region (with amide I peak height from 0.13 to 0.22 IR absorbance unit) and cellulosic compounds to carbohydrate ratio in the pericarp region (ratio from 0.02 to 0.06). The results suggest that with the SRFTIRM technique, the structural makeup differences between the new genotype oats (SO-I) and two conventional oats (Dancer and Derby) could be revealed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf903514tDOI Listing

Publication Analysis

Top Keywords

structural makeup
20
genotype oats
16
oats cdc
12
conventional oats
12
so-i oats
12
oats
10
so-i
8
cdc so-i
8
protein amide
8
so-i conventional
8

Similar Publications

The makeup of soil microbial communities may serve as a crucial predictor of the alpine grassland ecosystem. Climate change and human disturbance have resulted in intensified ecosystem degradation, such as grassland rocky desertification, which may modify the structures and composition of the microorganisms. However, little is known about the effects of rocky desertification on soil microbial communities of soil.

View Article and Find Full Text PDF

Chemotherapeutic therapies for cancer are frequently associated with cytotoxic side effects that can be harmful to human health, including the development of intestinal mucositis (IM). It mostly affects the gastrointestinal tract, causing ulceration, inflammation, and the formation of lesions in the colon. Surprisingly, despite the frequency of IM, therapeutic choices remain restricted.

View Article and Find Full Text PDF

Evolution of intrinsic disorder in the structural domains of viral and cellular proteomes.

Sci Rep

January 2025

Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA.

Intrinsically disordered regions are flexible regions that complement the typical structured regions of proteins. Little is known however about their evolution. Here we leverage a comparative and evolutionary genomics approach to analyze intrinsic disorder in the structural domains of thousands of proteomes.

View Article and Find Full Text PDF

Polyoxometalates (POMs) are composed of nanometric metal-oxide anions and have rich solution chemistry. In this class, Keggin POMs have been identified as the most influential inorganic additives for aqueous nonionic soft matter systems. POMs being at the borderline of classical ions and charged colloids possess fascinating solution properties; the present work aims to delve deeper into the interactions between nanoions and nonionic soft matters from a spectroscopic point of view.

View Article and Find Full Text PDF

Population structure provides essential information for developing meaningful conservation plans. This is especially important in remote places, such as oceanic islands, where limited population sizes and genetic isolation can make populations more susceptible and self-dependent. In this study, we assess and compare the relatedness, population genetics and molecular ecology of two sympatric Acropora species, A.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!