AI Article Synopsis

  • The study introduces a new aneurysm segmentation algorithm aimed at enhancing computational fluid dynamics (CFD) modeling for detecting intracranial aneurysms using 3D rotational angiography (3DRA).
  • The algorithm combines region-growing techniques with a 3D deformable contour based on a charged fluid model, allowing for automatic segmentation without prior anatomical knowledge.
  • Experimental results showed high accuracy in segmenting aneurysm structures, surpassing existing methods, and providing a clear representation of vascular structures for improved hemodynamics analysis.

Article Abstract

Purpose: Three-dimensional rotational angiography (3DRA) is an evolving imaging procedure from traditional digital subtraction angiography and is gaining much interest for detecting intracranial aneurysms. Computational fluid dynamics (CFD) modeling plays an important role in understanding the biomechanical properties and in facilitating the prediction of aneurysm rupture. A successful computational study relies on an accurate description of the vascular geometry that is obtained from volumetric images.

Methods: The authors propose a new aneurysm segmentation algorithm to facilitate the study of CFD. This software combines a region-growing segmentation method with the 3D extension of a deformable contour based on a charged fluid model. A charged fluid model essentially consists of a set of charged elements that are governed by the nature of electrostatics. The approach requires no prior knowledge of anatomic structures and automatically segments the vasculature after the end-user selects a vessel section in a plane image.

Results: Experimental results on 15 cases indicate that aneurysm structures were effectively segmented and in good agreement with manual delineation outcomes. In comparison with the existing methods, the algorithm provided a much higher overlap index with respect to the ground truth. Furthermore, the outcomes of the proposed approach achieved a clean representation of vascular structures that is advantageous for hemodynamics analyses.

Conclusions: A new aneurysm segmentation framework in an attempt to automatically segment vascular structures in 3DRA image volumes has been developed. The proposed algorithm demonstrated promising performance and unique characteristics to adequately segment aneurysms in 3DRA image volumes for further study in computational fluid dynamics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2789114PMC
http://dx.doi.org/10.1118/1.3260841DOI Listing

Publication Analysis

Top Keywords

computational fluid
12
fluid dynamics
12
intracranial aneurysms
8
aneurysm segmentation
8
charged fluid
8
fluid model
8
vascular structures
8
3dra image
8
image volumes
8
fluid
5

Similar Publications

rsfMRI-based brain entropy is negatively correlated with gray matter volume and surface area.

Brain Struct Funct

January 2025

Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, 670 W Baltimore St, HSF III, R1173, Baltimore, MD, 21202, USA.

The brain entropy (BEN) reflects the randomness of brain activity and is inversely related to its temporal coherence. In recent years, BEN has been found to be associated with a number of neurocognitive, biological, and sociodemographic variables such as fluid intelligence, age, sex, and education. However, evidence regarding the potential relationship between BEN and brain structure is still lacking.

View Article and Find Full Text PDF

Context: The flow equations are derived for describing the two-dimensional hybrid molecular-scale and continuum flows in the very small surface separation with inhomogeneous solid surfaces and they can be applied for designing the specific bearings. The aim of the present study is to solve this specific flow problem in engineering with normal computational cost. The flow factor approach model describes the flow of the molecule layer adjacent to the solid surface and the Newtonian fluid model describes the flow of the intermediate continuum fluid.

View Article and Find Full Text PDF

A Chain of Events Leading to Posttraumatic Subacute Meningitis.

Am J Forensic Med Pathol

January 2025

County of Santa Clara, Medical Examiner-Coroner Office, San Jose, CA.

There are few reports that discuss the nebulous entity known as posttraumatic subacute meningitis. Herein, we describe a case where a male was found deceased with Streptococcus pyogenes meningitis 7 days after experiencing head trauma inflicted with a tow chain. Computed tomography scan prior to death revealed a scalp laceration with subcutaneous gas and a subdural hematoma.

View Article and Find Full Text PDF

Clinical metaproteomics reveals host-microbiome interactions underlying diseases. However, challenges to this approach exist. In particular, the characterization of microbial proteins present in low abundance relative to host proteins is difficult.

View Article and Find Full Text PDF

Magnetorheological (MR) fluid (MRF) dampers, serving as fail-safe semi-active devices, exhibit nonlinear hysteresis characteristics, emphasizing the necessity for accurate modeling to formulate effective control strategies in smart systems. This paper introduces a novel stop operator-based Prandtl-Ishlinskii (PI) model, featuring a reduced parameter set (seven), designed to estimate the nonlinear hysteresis properties of a large-scale bypass MRF damper with variable stiffness capabilities under varying applied current. With only seven parameters, the model realizes current, displacement, and rate dependencies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!