Thymidylate synthase (TS) is a homodimeric enzyme with two equivalent active sites composed of residues from both subunits. Despite the structural symmetry of the enzyme, certain experimental results are consistent with half-the-sites activity, suggesting negative cooperativity between the active sites. To gain insight into the mechanism behind this phenomenon, we explore segmental motions of rat TS in the absence of ligands, with normal mode analysis as a tool. Using solvent accessible surface area of the active site pocket as a monitor of the degree of opening of the active sites, we classified the first 25 nontrivial normal modes, obtained from the web server of the program ElNémo, according to the behavior of the active sites. We found seven modes that open and close both sites symmetrically and nine that do so in an anticorrelated fashion. We characterized the motions of these modes by visual inspection and through measurement of distances between selected atoms lining the active site pockets. The segments that regulate access to the active site correspond to the loop containing R44, helix K, and a long loop containing residues 103-125, in agreement with a large body of crystallographic studies. These elements can be activated together or in isolation. There are more asymmetric modes than symmetric ones in the set we analyzed, probably accounting for the half-the-sites behavior of the enzyme. Three of the asymmetric modes result in changes at the dimer interface and indicate the endpoints of possible communication pathways between the active sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bip.21393 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!