Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Due to the increasing resistance of microbial pathogens to the available drugs, the identification of new antimicrobial agents with a new mechanism of action is urgently needed. In this context, cationic antimicrobial peptides (AMPs) are considered promising candidates. Although there is evidence that, in contrast to conventional antibiotics, microbial membranes are the principal target of a large number of AMPs, thus making it difficult for the pathogen to acquire resistance, their mode(s) of action is not yet completely clear. Intense research is currently devoted to understand the effect(s) of AMPs on intact cells, either at sub-lethal or at lethal peptide concentrations, and fluorescence/electron microscopy techniques represent a valid tool to get insight into the damage caused by these molecules on the morphology and membrane structure of the target cell. We here present an overview of some microscopic methodologies to address this issue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-60761-594-1_16 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!